Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 30(1): 015402, 2019 Jan 04.
Article in English | MEDLINE | ID: mdl-30362462

ABSTRACT

Solar steam generation provides a renewable and environmentally friendly approach to solve the water shortage issue. The pursuit of efficient, stable, and cheap photothermal agents is thus of great significance. In this work, Cu nanoparticles (NPs) fabricated simply by a substitution reaction, exhibit a near-unity (∼97.7%) light absorption, covering a broad incident angle and wavelength range (200-1300 nm). Thereby, a high photothermal conversion efficiency of 93% is achieved. The excellent photothermal performance offers a unique opportunity for the development of solar steam generation. By coating the Cu NPs on a cellulose membrane, a solar steam generation efficiency up to 73% is acquired at a low irradiation power density of 2 kW m-2 (1 kW m-2 = 1 sun). Moreover, the Cu NPs are recyclable with the high stability being resistant to heat, photoirradiation and corrosion of brine.

2.
Macromol Rapid Commun ; 35(19): 1712-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25186342

ABSTRACT

In this paper, an oxygen-insensitive degradable resist for UV-nanoimprint is designed, com-prising a polycyclic degradable acrylate monomer, 2,10-diacryloyloxymethyl-1,4,9,12-tetraoxa-spiro [4.2.4.2] tetradecane (DAMTT), and a multifunctional thiol monomer pentaerythritol tetra(3-mercaptopropionate) (PETMP). The resist can be quickly UV-cured in the air atmosphere and achieve a high monomer conversion of over 98%, which greatly reduce the adhesion force between the resist and the soft mold. High conversion, in company with an adequate Young's modulus (about 1 GPa) and an extremely low shrinkage (1.34%), promises high nanoimprint resolution of sub-50 nm. The cross-linked resist is able to break into linear molecules in a hot acid solvent. As a result, metallic patterns are fabricated on highly curved surfaces via the lift off process without the assistance of a thermoplastic polymer layer.


Subject(s)
Metals/chemistry , Nanotechnology , Oxygen/chemistry , Ultraviolet Rays , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...