Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Photochem Photobiol B ; 251: 112844, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38224669

ABSTRACT

Gold nanoparticles (GNPs) are usually formed via a wet chemical method using gold (III) chloride trihydrate (GC), which is treated with stable reducing agents such as sodium citrate (SC). This study determines the effect of coloured light on the formation of GNPs by irradiation of SC after the addition of GC (SCGC) and the effect of the SCGC photolytic procedure on the suppression of WiDr colon cancer cells by forming reactive oxygen species. The absorbance of surface plasmon resonance peaks at 523 nm are 0.069 and 0.219 for SCGC when treated with blue light illumination (BLI) and violet light irradiation (VLI), respectively, whereas green and red light treatments have little or no effect. Most GNPs have diameters ranging from 3 to 15 nm, with a mean of 6 nm, when SCGC is exposed to VLI for 1.5 h. Anionic superoxide radicals (O2•-) are formed in a charge-transfer process after SCGC under VLI treatment; however, BLI treatment produces no significant reaction. Moreover, SCGC under VLI treatment proves to be considerably more effective at inhibiting WiDr cells than BLI treatment, as firstly reported in this study. The reduction rates for WiDr cells treated with SCGC under BLI and VLI at an intensity of 2.0 mW/cm2 for 1.5 h (energy dose, 10.8 J/cm2) are 4.1% and 57.7%, respectively. The suppression rates for WiDr cells treated with SCGC are inhibited in an irradiance-dependent manner, the inhibition percentages being 57.7%, 63.3%, and 80.2% achieved at VLI intensities of 2.0, 4.0, and 6.0 mW/cm2 for 1.5 h, respectively. Propidium iodide is a fluorescent dye that detects DNA changes after cell death. The number of propidium iodide-positive nuclei significantly increases in WiDr cells treated with SCGC under VLI, suggesting that SCGC photolysis under VLI is a potential treatment option for the photodynamic therapy process.


Subject(s)
Colonic Neoplasms , Gold Compounds , Metal Nanoparticles , Humans , Sodium Citrate , Metal Nanoparticles/toxicity , Gold/pharmacology , Photolysis , Propidium , Colonic Neoplasms/drug therapy
2.
Photodiagnosis Photodyn Ther ; 44: 103810, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37748698

ABSTRACT

Riboflavin-5'-phosphate (FMN), an innocuous product of riboflavin (RF) phosphorylation, is vital for humans. FMN is sensitive to light illumination, as indicated by reactive oxygen species (ROS) formation. This investigation was undertaken to evaluate the influence of blue light illumination (BLI) and violet light illumination (VLI) upon FMN to develop a method to inhibit WiDr colon cancer cells by FMN photolysis. When FMN is subjected to BLI and VLI, it inhibits WiDr colon cancer cells by generating superoxide radical anions (O2•-). The respective reduction rates are 42.6 and 81.9 % in WiDr colon cancer cells for FMN treated with BLI and VLI at 20 W/m2 for 0.5 h. FMN treated with VLI inhibits WiDr colon cancer cells more effectively than BLI. Propidium iodide (PI) is a fluorescent dye that is used to detect abnormal DNA due to cell death by apoptosis or necrosis. The PI-positive count for nuclei increased significantly for the WiDr colon cancer cells that were treated with FMN under VLI at 20 W/m2 for 0.5 h. FMN photolysis achieved using VLI allows efficient photodynamic therapy (PDT) by triggering the cytotoxicity of FMN on WiDr colon cancer cells.


Subject(s)
Colonic Neoplasms , Photochemotherapy , Humans , Reactive Oxygen Species/metabolism , Light , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Riboflavin/pharmacology , Colonic Neoplasms/drug therapy , Phosphates
3.
Photodiagnosis Photodyn Ther ; 39: 102917, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35597444

ABSTRACT

Oxytetracycline (OTC), a tetracycline antibiotic, is a broad-spectrum antibacterial agent. In this investigation, liquid chromatography-mass spectrometry (LC-MS) is utilized to determine the effects of blue light (λ = 448 nm) illumination (BLIA) and violet light (λ = 403 nm) illumination (VLIA) on conformational changes in OTC at pH 7.8. The photochemical effect of OTC that is exposed to BLIA and VLIA on the deactivation of Escherichia coli (E. coli) is studied. The deactivation of E. coli has an insignificant effect on treatment with OTC alone. OTC is relatively unstable under BLIA and VLIA illumination in an alkaline solution, and OTC has been shown to inactivate E. coli by generating reactive oxygen species (ROS). Less anionic superoxide radicals (O2•-) are generated from OTC that is treated with BLIA than that from VLIA treatment, so OTC is more efficient in inactivating E. coli under VLIA. Inactivation of reduction rates of 0.51 and 3.65 logs in E. coli are achieved using 0.1 mM OTC under BLIA for 120 min and VLIA for 30 min, respectively, under the same illumination intensity (20 W/m2). Two photolytic products of OTC (PPOs) are produced when OTC is exposed to BLIA and VLIA, with molecular ions at m/z 447 and 431, molecular formulae C21H22N2O9 and C21H22N2O8, and masses of 446.44 and 430.44 g/mol, respectively. The results show that when exposed to VLIA, OTC exhibits enhanced inactivation of E. coli, suggesting that the photochemical treatment of OTC is a potential supplement in a hygienic process.


Subject(s)
Oxytetracycline , Photochemotherapy , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli , Light , Oxytetracycline/analysis , Oxytetracycline/chemistry , Oxytetracycline/pharmacology , Photochemotherapy/methods , Reactive Oxygen Species
4.
J Vis Exp ; (182)2022 04 06.
Article in English | MEDLINE | ID: mdl-35467652

ABSTRACT

Riboflavin-5'-phosphate (or flavin mononucleotide; FMN) is sensitive to visible light. Various compounds, including reactive oxygen species (ROS), can be generated from FMN photolysis upon irradiation with visible light. The ROS generated from FMN photolysis are harmful to microorganisms, including pathogenic bacteria such as Staphylococcus aureus (S. aureus). This article presents a protocol for deactivating S. aureus, as an example, via photochemical reactions involving FMN under visible light irradiation. The superoxide radical anion () generated during the FMN photolysis is evaluated via nitro blue tetrazolium (NBT) reduction. The microbial viability of S. aureus that is attributed to reactive species was used to determine the effectiveness of the process. The bacterial inactivation rate is proportional to FMN concentration. Violet light is more efficient in inactivating S. aureus than blue light irradiation, while the red or green light does not drive FMN photolysis. The present article demonstrates FMN photolysis as a simple and safe method for sanitary processes.


Subject(s)
Flavin Mononucleotide , Staphylococcus aureus , Flavin Mononucleotide/chemistry , Light , Phosphates , Photolysis , Reactive Oxygen Species
5.
J Photochem Photobiol B ; 226: 112370, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34864528

ABSTRACT

Doxycycline hyclate (DCH) and minocycline hydrochloride (MH) are tetracycline antibiotics and broad-spectrum antimicrobial agents. The changes in DCH and MH under blue light (λ = 462 nm) irradiation in alkaline conditions (BLIA) were investigated. Deactivation caused by superoxide anion radical (O2•-) and deactivation from DCH and MH during photolysis on Staphylococcus aureus (S. aureus), including methicillin-resistant S. aureus (MRSA), were studied. DCH is relatively unstable compared to MH under BLIA. The level of O2•- generated from the MH-treated photoreaction is lower than that from DCH photolysis, and the DCH-treated photoreaction is more efficient at inactivating S. aureus and MRSA at the same radiant intensity. DCH subjected to BLIA decreased the viability of S. aureus and MRSA by 3.84 and 5.15 log, respectively. Two photolytic products of DCH (PPDs) were generated under BLIA. The mass spectra of the PPDs featured molecular ions at m/z 460.8 and 458.8. The molecular formulas of the PPDs were C21H22N2O10 and C22H24N2O9, and their exact masses were 462.44 and 460.44 g/mol, respectively. These results bolster the photolytic oxidation that leads to DCH-enhanced deactivation of S. aureus and MRSA. Photochemical treatment of DCH could be applied as a supplement in hygienic processes.


Subject(s)
Staphylococcus aureus
6.
Molecules ; 25(24)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348758

ABSTRACT

Tea is rich in catechins and aluminum. In this study, the process of catechin photolysis was applied as a model for examining the effects of aluminum chloride (AlCl3) on the structural changes of catechin and the alteration of aluminum complexes under blue light irradiation (BLI) at pH 8 using liquid chromatography and mass spectrometry techniques. Additionally, the effects of anions on catechin upon the addition of AlCl3 and treatment with BLI were also studied. In this study, when 1 mM catechin was treated with BLI, a superoxide anion radical (O2•-) was generated in an air-saturated aqueous solution, in addition to forming a dimeric catechin (proanthocyanidin) via a photon-induced redox reaction. The relative percentage of catechin was found to be 59.0 and 95.7 for catechin treated with BLI and catechin upon the addition of 1 mM AlCl3 treated with BLI, respectively. It suggested that catechin treated with BLI could be suppressed by AlCl3, while AlCl3 did not form a complex with catechin in the photolytic system. However, under the same conditions, it was also found that the addition of AlCl3 inhibited the photolytic formation of O2•-, and reduced the generation of proanthocyanidin, suggesting that the disconnection of proanthocyanidin was achieved by AlCl3 acting as a catalyst under treatment with BLI. The influence of 1 mM fluoride (F-) and 1 mM oxalate (C2O42-) ions on the photolysis of 1 mM catechin upon the addition of 1 mM AlCl3 and treatment with BLI was found to be insignificant, implying that, during the photolysis of catechin, the Al species were either neutral or negatively charged and the aluminum species did not form a complex with anions in the photolytic system. Therefore, aluminum, which is an amphoteric species, has an inherent potential to stabilize the photolysis of catechin in an alkaline conditions, while suppressing the O2•- and proanthocyanidin generation via aluminum ion catalysis in the catechin/Al system under treatment with BLI.


Subject(s)
Aluminum Chloride/chemistry , Catechin/chemistry , Photolysis , Proanthocyanidins/chemistry , Superoxides/chemistry , Aluminum/chemistry , Chromatography, Liquid , Light , Mass Spectrometry , Plants/chemistry , Tea/chemistry
7.
Chemosphere ; 241: 124956, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31605996

ABSTRACT

High contents of arsenic were detected in soils in Guandu plain, northwest Taiwan. To determine the sources and speciation of As in the soils, the depth profiles of soil properties, elemental composition and As speciation were investigated. The As concentrations in the soil profile ranged from 152 to 1222 mg kg-1, with the highest concentration at the depth of 70-80 cm. The As distribution was found to be positively correlated to Fe, Pb, and Ba. The As(V)-adsorbed ferrihydrite and scorodite were the predominant phases in the top layers (<50 cm), while beudantite was the predominant phase below 50 cm along with As(III)- and As(V)-adsorbed ferrihydrite as the minor components. The results of sequential extraction showed that As-associated with noncrystalline and crystalline Fe/Al hydrous oxides and residual phases were predominant at the depths of 0-60, 60-100 and 100-140 cm, respectively, indicating an increasing As recalcitrance with soil depth. Based on the soil properties, and elemental and mineral compositions at different soil depths, the origin of beudantite in the soils was likely allogenic rather than authigenic or anthropogenic. The formation of scorodite in the surface soils was suggested to be transformed from beudantite. As-associated Fe hydrous oxides may be contributed by the progressive dissolution of beudantite and scorodite, and the continuous influxes of As and Fe. While Fe hydrous oxides were able to immobilize As during the dissolution of As-bearing minerals, the increase of As mobility in soils may imply an increase in the environmental risk of As over time.


Subject(s)
Arsenic/analysis , Soil Pollutants/analysis , Soil/chemistry , Arsenic/chemistry , Arsenic/standards , Arsenicals/analysis , Ferric Compounds/analysis , Minerals/analysis , Taiwan , X-Ray Absorption Spectroscopy
8.
Microorganisms ; 7(11)2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31661888

ABSTRACT

Tetracycline (TC) is a broad-spectrum antibiotic compound. Wastewater with TC may have an adverse effect on ecosystems. Riboflavin-5'-phosphate (FMN or flavin mononucleotide) is a non-toxic product of the phosphorylation of vitamin B2 and is required for the proper functioning of the humans. FMN is sensitized to ultraviolet (UV) and blue light radiation, as evidenced by the generation of reactive oxygen species (ROS). This study inspects feasible applications of blue light on FMN so as to develop a valid way of degrading TC by FMN photolysis. We used the increased rate of bacterial survival as a practical indicator of antibiotic degradation. TC in the presence of FMN solution decomposed completely after 20 W/m2 of blue light irradiation (TCF treatment), and the degradation of TC (D-TCF) occurred after the photolytic process. After TCF treatment, colony-forming units (CFUs) of Escherichia coli (E. coli) were determined for the D-TCF solution. The CFU of E. coli preservation was 93.2% of the D-TCF solution (50 µg/mL of TC in the presence of 114 µg/mL of FMN solution treated with 20 W/m2 of blue light irradiation at 25 °C for 1 h) cultivation. The mass spectrum of D-TCF showed diagnostic ion signals at m/z 431.0 and 414.0 Da. The molecular formula of D-TCF was C21H22N2O8, and the exact mass was 430.44 g/mol. TC degradation by FMN photolysis can significantly decrease the antimicrobial ability of TC. The results expressed here regarding the influence of FMN photolysis on TC degradation offer an environmentally sound wastewater treatment method.

9.
Molecules ; 24(4)2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30813243

ABSTRACT

Catechins belonging to polyhydroxylated polyphenols are the primary compounds found in green tea. They are associated with many physiological properties. Epicatechin (EC) is a non-gallate-type catechin with four phenolic hydroxyl groups attached. The changes in EC treated with color light illumination in an alkaline condition were investigated by chromatographic and mass analyses in this study. In particular, the superoxide anion radical (O2•-) was investigated during the EC photolytic process. EC is unstable under blue light illumination in an alkaline solution. When EC was treated with blue light illumination in an alkaline solution, O2•- was found to occur via a photosensitive redox reaction. In addition, the generation of monomeric, dimeric, and trimeric compounds is investigated. On the other hand, epigallocatechin gallate (EGCG), which is a gallate-type catechin, is stable under blue light illumination in an alkaline solution. Adding EGCG, during the blue light illumination treatment of EC decreased photolytic formation, suggesting that gallate-type catechins can suppress the photosensitive oxidation of EC. Gallate-type catechins are formed via the esterification of non-gallate-type catechins and gallic acid (GA). The carbonyl group on the gallate moiety of gallate-type catechins appears to exhibit its effect on the stability against the photosensitive oxidation caused by blue light illumination.


Subject(s)
Catechin/analogs & derivatives , Catechin/chemistry , Drug Stability , Molecular Structure , Photolysis , Tea/chemistry
10.
J Clin Med ; 7(9)2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30213146

ABSTRACT

The adaptability of bacterial resistance to antibiotics contributes to its high efficiency during evolution. Tetracycline (TC) is a broad-spectrum antimicrobial agent. Chromatographic analyses and mass spectrometry were used to study the effects of the light illumination of a 462 nm light-emitting diode (LED) on the conformational changes of TC in a phosphate buffer solution (PBS, pH 7.8). Especially, the inactivation of superoxide anion radicals (O2•-) and Escherichia coli (E. coli), including that of a multidrug-resistant E. coli (MDR E. coli), were investigated during the photolysis of TC. A photolysis product of TC (PPT) was generated in an alkaline solution after the illumination of a blue light. The mass spectra of PPT had characteristic ion signals in m/z 459, 445, and 249.1 Da. The PPT has the molecular formula of C22H22N2O9, and the exact mass is 458.44 g/mol. The inactivation of MDR E. coli is not significant with TC treatment. The drug-resistant ability of MDR E. coli has a less significant effect on PPT, and the changed conformation of TC retained the inactivation ability of MDR E. coli upon blue light photoreaction. With TC, illuminated by a blue light in a pH 7.8 PBS, O2•- was generated from TC photolysis, which enhanced the inactivation of E. coli and MDR E. coli. A 96.6% inactivation rate of MDR E. coli was reached with TC under 2.0 mW/cm² blue light illumination at 25 ± 3 °C for 120 min, and the effects of the TC-treated photoreaction on MDR E. coli viability repressed the growth of MDR E. coli by 4 to 5 logs. The present study of the blue light photoreaction of TC offers a new approach to the inactivation of MDR E. coli.

11.
J Colloid Interface Sci ; 532: 375-386, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30096531

ABSTRACT

This is the first paper to report a series of bismuth oxyfluoride/bismuth oxyiodide (BiOpFq/BiOxIy) nanocomposites with different F/I molar ratios, pH values, and reaction temperatures that were synthesized through a template-free and controlled hydrothermal method. These nanocomposites were characterized through scanning electron microscope energy dispersive microscopy (SEM-EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), and diffuse reflectance spectroscopy (DRS). Under visible-light irradiation, the BiOpFq/BiOxIy composites exhibited excellent photocatalytic activities in the degradation of crystal violet (CV) and 2-hydroxybenzoic acid (HBA). The order of rate constants was BiOF/BiOI > BiOI ≫ BiOF. The photocatalytic activity of BiOF/BiOI composites reached a maximum rate constant of 0.2305 h-1, 1.2 times higher than that of BiOI and 100 times higher than that of BiOF. Thus, the derived BiOF/BiOI is crucial for photocatalytic activity enhancement. After the removal of CV in the third cycle, no apparent deficits in photocatalytic activity were observed, and the observed deficit was 8.2% during the fifth run. Overall, the catalytic activity and stability observed for the proposed composites were determined to be adequate under visible-light irradiation. For various scavengers, the noted quenching effects demonstrated that reactive O2- has a notable role in the degradation of the applied CV.

12.
Molecules ; 23(7)2018 07 04.
Article in English | MEDLINE | ID: mdl-29973539

ABSTRACT

Catechin is a flavan-3-ol, a derivative of flavans, with four phenolic hydroxyl groups, which exhibits a wide range of physiological properties. Chromatographic analyses were employed to examine the effects of blue light irradiation on the changes of catechin hydrate in an alkaline condition. In particular, the detection of a superoxide anion radical (O2•−), a reactive oxygen species (ROS), and the inactivation of Acinetobacter baumannii (A. baumannii)­including a carbapenem-resistant A. baumannii (CRAB)­was investigated during the photoreaction of catechin hydrate. Following basification with blue light irradiation, the transparent solution of catechin hydrate turned yellowish, and a chromogenic catechin dimer was separated and identified as a proanthocyanidin. Adding ascorbic acid during the photolytic treatment of catechin hydrate decreased the dimer formation, suggesting that ascorbic acid can suppress the photosensitive oxidation of catechin. When catechin hydrate was irradiated by blue light in an alkaline solution, O2•− was produced via photosensitized oxidation, enhancing the inactivation of A. baumannii and CRAB. The present findings on the photon-induced oxidation of catechin hydrate provides a safe practice for the inactivation of environmental microorganisms.


Subject(s)
Acinetobacter baumannii/drug effects , Catechin/pharmacology , Drug Resistance, Neoplasm/drug effects , Photosensitizing Agents/pharmacology , Acinetobacter baumannii/metabolism , Ascorbic Acid/chemistry , Carbapenems/pharmacology , Catechin/chemistry , Microbial Sensitivity Tests , Microbial Viability/drug effects , Molecular Structure , Photosensitizing Agents/chemistry , Reactive Oxygen Species/metabolism
13.
J Photochem Photobiol B ; 174: 355-363, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28822287

ABSTRACT

Crystal violet (CV) is applied in daily use mainly as a commercial dye and antimicrobial agent. Waste water containing CV may affect aquatic ecosystems. Riboflavin, also known as vitamin B2, is non-toxic and an essential vitamin required for the functions of the human body. Riboflavin is photosensitive to UV and visible light in terms of generating reactive oxygen species. This study investigated the potential application of blue light on riboflavin, so as to come up with an effective way of degrading CV during its treatment. Photosensitivity of CV leading to degradation in the presence of riboflavin was investigated by light intensity, exposure time, and irradiation dosage. The degradation of CV during riboflavin photolysis treatment was studied by a UV/vis spectrometry and chromatography. The effects of CV degradation on microbial viability are relevant when considering the influences on the ecosystem. This study proved that riboflavin photochemical treatment with blue light degrades CV dye by ROS formation. The riboflavin photolysis-treated CV solution appeared to be transparent during conformational transformations of the CV that was rearranged by free radical species generated from riboflavin photolysis. After riboflavin photolysis, colony-forming units (CFUs) were determined for each CV solution. CFU preservation was 85.2% for the CV dissolved riboflavin solution treated with blue light irradiation at 2.0mW/cm2 for 120min. Degradation of CV by riboflavin photochemical procedures can greatly reduce antimicrobial ability and serve as an environmental friendly waste water treatment method. Our results presented here concerning riboflavin photolysis in degradation of CV provide a novel technique, and a simple and safe practice for environmental decontamination processes.


Subject(s)
Gentian Violet/chemistry , Gentian Violet/pharmacology , Light , Microbial Viability/drug effects , Photolysis , Riboflavin/chemistry , Singlet Oxygen/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
14.
J Hazard Mater ; 179(1-3): 160-5, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20303657

ABSTRACT

In this study, the removal mechanism of Cr(VI) from water by coconut coir (CC) was investigated using X-ray photoelectron spectroscopy (XPS), Cr K-edge X-ray absorption near edge structure (XANES) and FTIR spectroscopy. The results showed that, upon reaction with CC at pH 3, Cr(VI) was reduced to Cr(III), which was either bound to CC or released back into solution. As revealed by the FTIR spectra of CC before and after reacting with Cr(VI), the phenolic methoxyl and hydroxyl groups of lignin in CC are the dominant drivers of Cr(VI) reduction, giving rise to carbonyl and carboxyl groups on CC. These functional groups can subsequently provide binding sites for Cr(III) resulting from Cr(VI) reduction. In conjunction with forming complexes with carbonyl and carboxyl groups, the formation of Cr(III) hydroxide precipitate could also readily occur as revealed by the linear combination fitting of the Cr K-edge XANES spectrum using a set of reference compounds. The phenolic groups in lignin are responsible for initiating Cr(VI) reduction, so lignocellulosic materials containing a higher amount of phenolic groups are expected to be more effective scavengers for removal of Cr(VI) from the environment.


Subject(s)
Chromium/chemistry , Cocos/chemistry , Adsorption , Cellulose/chemistry , Hydrogen-Ion Concentration , Lignin , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
15.
J Hazard Mater ; 171(1-3): 1032-44, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19604632

ABSTRACT

The main advantage of Fenton's reagent (FR) over other OH systems is its simplicity. FR has the potential for widespread use in treating wastewater, but compared to other OH systems, little information on the dye degradation pathways of FR exists. The degradation of crystal violet (CV), a triphenylmethane dye, by FR was determined as a function of reagent concentration and ratio and pH in the batch treatment. The experimental results showed the optimum Fe(2+)/H(2)O(2) ratio to be 0.5mM:50mM and the optimum Fe(3+)/H(2)O(2) ratio to be 1mM:50mM. Optimal pH was about 3. To obtain a better understanding of the mechanistic details of Fenton reagent's degradation of CV dye, the intermediates of the process were separated, identified, and characterized by HPLC-PDA-ESI-MS and GC-MS techniques in this study. Indications were that the probable degradation pathways were N-de-methylation and cleavage of the conjugated chromophore structure. The intermediates were generated in the order of the reaction time and relative concentration, indicating that the N-de-methylation degradation of CV dye is a major reaction pathway. The reaction mechanisms proposed in this research should prove useful for future application of the technology to the decolorization of dyes.


Subject(s)
Gentian Violet/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Coloring Agents/chemistry , Hydrogen-Ion Concentration , Hydroxyl Radical/chemistry , Industrial Waste , Methylation , Models, Chemical , Ozone , Spectrometry, Mass, Electrospray Ionization/methods , Waste Disposal, Fluid , Water Purification/methods
16.
J Hazard Mater ; 171(1-3): 1066-70, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19619940

ABSTRACT

This study evaluates the removal of Cr(VI) from water by carbon derived from the burning of rice straw. Rice straw was burned in the air to obtain rice carbon (RC), and then the removal of Cr(VI) by RC was investigated under various pHs and ionic strengths. After the experiments, the oxidation state of Cr bound to RC was analyzed using X-ray photoelectron spectroscopy, which revealed that Cr bound to RC was predominately in the trivalent form. The results showed that upon reacting with RC, Cr(VI) was reduced to Cr(III), which was either adsorbed on RC or released back into solution. The extent and rate of Cr(VI) removal increased with decreasing solution pH because the Cr(VI) adsorption and the subsequent reduction of adsorbed Cr(VI) to Cr(III) both occur preferentially at low pH. The minimal effect of ionic strength on the rates of Cr(VI) removal and Cr(III) adsorption indicated specific interactions between Cr(VI)/Cr(III) and their surface binding sites on RC. These results suggest that rice straw-based carbon may be effectively used at low pH as a substitute for activated carbon for the treatment of Cr(VI) contaminated water.


Subject(s)
Carbon/chemistry , Chromium/isolation & purification , Oryza , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Chromium/chemistry , Hydrogen-Ion Concentration , Kinetics , Oxygen/chemistry , Solutions , Spectrometry, X-Ray Emission/methods , Water Pollutants, Chemical/analysis , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...