Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 1044637, 2022.
Article in English | MEDLINE | ID: mdl-36570945

ABSTRACT

Introduction: With increasing forest areas under management, dynamics of managed stands have gained more attention by forest managers and practitioners. Improved understanding on how trees and forest stands would respond to different disturbances is required to predict the dynamics of managed stand.s. Partial mortality commonly occurs in stand development, and different response patterns of trees and stands to partial mortality would govern stand dynamics. Methods: To investigate the possible response patterns using existing knowledge of growth and yield relationships, we developed TreeCG model, standing for Tree's Compensatory Growth, a state-dependent individual tree-based forest growth model that simulates the compensatory growth of trees after experiencing a partial mortality. The mechanism behind the simulation is the redistribution of resources, including nutrients and space, freed from died trees to surviving trees. The developed new algorithm simplified the simulations of annual growth increments of individual trees over a long period of stand development. Results: The model was able to reproduce the forest growth patterns displayed in long-term precommercial thinning experiments. The simulated forest growth displayed the process of compensatory growth from under compensation, to compensation-induced-equality, and to overcompensation over time. Discussion: Our model can simulate stand growth trajectories after different partial harvest regimes at different times and intensities, thus support decisions in best partial harvest strategies. This generic model can be refined with given tree species and specific site conditions to predict stand dynamics after given partial mortality for any jurisdictions under management. The simulation reassembles growth trajectories of natural stands when no thinning is conducted.

2.
Front Plant Sci ; 13: 907598, 2022.
Article in English | MEDLINE | ID: mdl-35599868

ABSTRACT

Compensatory growth (CG) appears common in biology and is defined as accelerated growth after experiencing a period of unfavorable conditions. It usually leads to an increase in biomass that may eventually equal or even surpass that of sites not experiencing disturbance. In forestry, with sufficient time the stand volume lost in a disturbance such as a thinning operation could match or even exceed those from undisturbed sites, respectively called exact and overcompensation. The forest sector could benefit from enhanced productivity and associated ecosystem services such as carbon storage through overcompensation. Therefore, detection of CG in different types of forests becomes important for taking advantage of it in forest management. However, compensatory growth has not been reported widely in forestry, partially due to the paucity of long-term observations and lack of proper indicators. Legacy forest projects can provide a suitable data source, though they may be originally designed for other purposes. Three case studies representing different data structures of silviculture trials are investigated to evaluate if compensatory growth is common in forest stands. Our results showed that compensatory growth occurred in all three cases, and thus suggested that the compensatory growth might indeed be common in forest stands. We found that the relative growth (RG) can serve as a universal indicator to examine stand-level compensatory growth in historical long-term silviculture datasets. When individual tree-based measurements are available, both volume and value-based indicators can be used in detecting compensatory growth, and lumber value-based indicators could be more sensitive in detecting overcompensation.

3.
Ecol Lett ; 25(7): 1676-1689, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35598109

ABSTRACT

Demographic compensation-the opposing responses of vital rates along environmental gradients-potentially delays anticipated species' range contraction under climate change, but no consensus exists on its actual contribution. We calculated population growth rate (λ) and demographic compensation across the distributional ranges of 81 North American tree species and examined their responses to simulated warming and tree competition. We found that 43% of species showed stable population size at both northern and southern edges. Demographic compensation was detected in 25 species, yet 15 of them still showed a potential retraction from southern edges, indicating that compensation alone cannot maintain range stability. Simulated climatic warming caused larger decreases in λ for most species and weakened the effectiveness of demographic compensation in stabilising ranges. These findings suggest that climate stress may surpass the limited capacity of demographic compensation and pose a threat to the viability of North American tree populations.


Subject(s)
Climate Change , Trees , North America , Population Dynamics , Population Growth
5.
Proc Natl Acad Sci U S A ; 112(13): 4009-14, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25775576

ABSTRACT

Tree mortality, growth, and recruitment are essential components of forest dynamics and resiliency, for which there is great concern as climate change progresses at high latitudes. Tree mortality has been observed to increase over the past decades in many regions, but the causes of this increase are not well understood, and we know even less about long-term changes in growth and recruitment rates. Using a dataset of long-term (1958-2009) observations on 1,680 permanent sample plots from undisturbed natural forests in western Canada, we found that tree demographic rates have changed markedly over the last five decades. We observed a widespread, significant increase in tree mortality, a significant decrease in tree growth, and a similar but weaker trend of decreasing recruitment. However, these changes varied widely across tree size, forest age, ecozones, and species. We found that competition was the primary factor causing the long-term changes in tree mortality, growth, and recruitment. Regional climate had a weaker yet still significant effect on tree mortality, but little effect on tree growth and recruitment. This finding suggests that internal community-level processes-more so than external climatic factors-are driving forest dynamics.


Subject(s)
Climate Change , Forests , Trees/growth & development , Canada , Climate , Data Collection , Databases, Factual , Geography , Models, Statistical , Time Factors
6.
Tree Physiol ; 30(3): 335-45, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20067911

ABSTRACT

This study tests the hypothesis that ring growth in the upper stem portion of trees is affected by climatic conditions differently than rings formed at breast height (1.3 m). A total of 389 trees from a network of 65 lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) sites in Alberta were examined using detailed stem analysis in order to examine interannual patterns of basal area increment and volume increment at different positions along the stem. Growth at lower sections of the bole was mainly driven by temperature and moisture conditions in the seasons prior to the growing season in the year of ring formation, while upper stem growth was more related to conditions during the year of growth, i.e., temperature in the early summer, or moisture in late winter to early spring. This translates into increased allocation of wood to the lower stem when prior late summer conditions are cool and wet, prior winters are mild (warm with little snow) and early summer conditions in the year of ring formation are hot and dry.


Subject(s)
Climate , Pinus/anatomy & histology , Pinus/physiology , Plant Stems/anatomy & histology , Plant Stems/physiology , Ecosystem , Seasons , Time Factors , Weather
7.
Tree Physiol ; 26(6): 819-31, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16510398

ABSTRACT

We describe methods and results for broad-scale estimation and mapping of forest biomass for the Canadian province of Alberta. Differences over successive decades provided an estimate of biomass change. Over 1500 permanent sample plots (PSP) were analyzed from across the range of lodgepole pine (Pinus contorta var. latifolia Engelm.), the major forest tree species of Alberta. The PSP network is densest in stands aged between 70 and 100 years and is well-represented by stands of all ages to 150 years of age. Stand biomass (Mg ha(-1)) was estimated for each PSP plot as the sum of the respective biomass components for each tree (live and standing dead). The biomass components for live trees were stem, bark, branches, foliage and roots. The components for standing dead trees excluded foliage. Equations from previous biomass studies were used for biomass component estimation. Biomass estimates of additional non-tree components were attempted, but without much success. Biomass of the soil organic layer was estimated once on 452 PSPs and a mean estimate of total dead fuels on the ground (28.4 Mg ha(-1)) was available only for the entire distribution of lodgepole pine. However, values of these two components were essentially constant over time and therefore did not alter the analysis or conclusions obtained by analyzing total tree biomass alone. We then used this spatial network of 1549 plots as the basis for mapping biomass across Alberta. Mapping methods were based on Australian National University SPLINe (ANUSPLIN) software, Hutchinson's thin-plate smoothing spline in four dimensions (latitude, longitude, elevation and biomass). Total tree biomass (mean = 172 Mg ha(-1)) was dominated by stem biomass (mean = 106 Mg ha(-1)), which was an order of magnitude greater than the mean estimates for the bark (11 Mg ha(-1)), branch (12 Mg ha(-1)) and foliage (12 Mg ha(-1)) components. A close relationship was found between total tree biomass and stand stem volume (R(2) = 0.992 with n = 3585; note that volume and biomass were calculated independently). We compared total tree biomass for two decades, the 1980s and the 1990s. After correcting for changes in harvest removals over time, the mean change in total biomass was positive (0.99 Mg ha(-1) year(-1)) and differed significantly from zero (n = 421; P < 0.001). Estimates ranged from -13.9 to 8.0 Mg ha(-1) year(-1). The heart of the lodgepole pine distribution (primarily the Foothills subregions) showed an increase in biomass, whereas isolated pockets of lodgepole pine in the boreal northern subregion indicated a decline in biomass.


Subject(s)
Biomass , Pinus/growth & development , Alberta , Models, Biological , Pinus/anatomy & histology , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Roots/anatomy & histology , Plant Roots/growth & development , Plant Stems/anatomy & histology , Plant Stems/growth & development , Soil , Trees/anatomy & histology , Trees/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...