Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; 24(23): e202300582, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37728423

ABSTRACT

(R)-ß-piperonyl-γ-butyrolactones are key building blocks for the synthesis of podophyllotoxin, which have demonstrated remarkable potential in cancer treatment. Baeyer-Villiger monooxygenases (BVMOs)-mediated asymmetric oxidation is a green approach to produce chiral lactones. While several BVMOs were able to oxidize the corresponding cyclobutanone, most BVMOs gave the (S) enantiomer while Cyclohexanone monooxygenase (CHMO) from Brevibacterium sp. HCU1 gave (R) enantiomer, but with a low enantioselectivity (75 % ee). In this study, we use a strategy called "focused rational iterative site-specific mutagenesis" (FRISM) at residues ranging from 6 Šfrom substrate. The mutations by using a restricted set of rationally chosen amino acids allow the formation of a small mutant library. By generating and screening less than 60 variants, we achieved a high ee of 96.8 %. Coupled with the cofactor regeneration system, 9.3 mM substrate was converted completely in a 100-mL scale reaction. Therefore, our work reveals a promising synthetic method for (R)-ß-piperonyl-γ-butyrolactone with the highest enantioselectivity, and provides a new opportunity for the chem-enzymatic synthesis of podophyllotoxin.


Subject(s)
Oxygenases , Podophyllotoxin , Oxygenases/metabolism , Mixed Function Oxygenases/metabolism , Oxidation-Reduction , Substrate Specificity
2.
AoB Plants ; 9(6): plx064, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29302304

ABSTRACT

Aluminium (Al) toxicity is one of the most important limiting factors for crop yield in acidic soils. However, the mechanisms that confer Al tolerance still remain largely unknown. To understand the molecular mechanism that confers different tolerance to Al, we performed global transcriptome analysis to the roots and leaves of two contrasting soybean genotypes, BX10 (Al-tolerant) and BD2 (Al-sensitive) under 0 and 50 µM Al3+ treatments, respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that the expression levels of the genes involved in lipid/carbohydrate metabolism and jasmonic acid (JA)-mediated signalling pathway were highly induced in the roots and leaves of both soybean genotypes. The gene encoding enzymes, including pyruvate kinase, phosphoenolpyruvate carboxylase, ATP-citrate lyase and glutamate-oxaloacetate transaminase 2, associated with organic acid metabolism were differentially expressed in the BX10 roots. In addition, the genes involved in citrate transport were differentially expressed. Among these genes, FRD3b was down-regulated only in BD2, whereas the other two multidrug and toxic compound extrusion genes were up-regulated in both soybean genotypes. These findings confirmed that BX10 roots secreted more citrate than BD2 to withstand Al stress. The gene encoding enzymes or regulators, such as lipoxygenase, 12-oxophytodienoate reductase, acyl-CoA oxidase and jasmonate ZIM-domain proteins, involved in JA biosynthesis and signalling were preferentially induced in BD2 leaves. This finding suggests that the JA defence response was activated, possibly weakening the growth of aerial parts because of excessive resource consumption and ATP biosynthesis deficiency. Our results suggest that the Al sensitivity in some soybean varieties could be attributed to the low level of citrate metabolism and exudation in the roots and the high level of JA-mediated defence response in the leaves.

3.
Chem Biol Drug Des ; 84(5): 603-15, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24797889

ABSTRACT

In this study, we report the identification of a new shikonin-phenoxyacetic acid derivative, as an inhibitor of tubulin. A series of compounds were prepared; among them, compound 16 [(R)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-enyl 2-(4- phenoxyphenyl) acetate] potently inhibited the function of microtubules, inducing cell growth inhibition, apoptosis of cancer cell lines in a concentration and time-dependent manner. Molecular docking involving 16 at the vinblastine binding site of tubulin indicated that a phenoxy moiety interacted with tubulin via hydrogen bonding with asparaginate (Asn) and tyrosine (Tyr). Analysis of microtubules with confocal microscopy demonstrated that 16 altered the microtubule architecture and exhibited a significant reduction in microtubule density. Cell cycle assay further proved that HepG2 cells were blocked in G2/M phase. Our study provides a new, promising compound for the development of tubulin inhibitors by proposing a new target for the anticancer activity of shikonin.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Naphthoquinones/chemistry , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology , Tubulin/metabolism , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Binding Sites , Dose-Response Relationship, Drug , Hep G2 Cells/drug effects , Humans , Hydrogen Bonding , Microtubules/drug effects , Molecular Docking Simulation , Molecular Targeted Therapy , Vinblastine/metabolism
4.
Chem Biol Drug Des ; 83(3): 334-43, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24118825

ABSTRACT

A series of shikonin derivatives (1-13) that were acylated selectively by various thiophene or indol carboxylic acids at the side chain of shikonin were synthesized, and their biological activities were also evaluated as potential tubulin inhibitors. Among them, compound 3 ((R)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-enyl 3-(1H-indol-3-yl)propanoate) and compound 8 ((R)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-enyl 2-(thiophen-3-yl)acetate) exhibited good antiproliferative activity of A875 (IC50  = 0.005 ± 0.001 µm, 0.009  ± 0.002 µm) and HeLa (IC50  = 11.84 ± 0.64 µm, 4.62  ± 0.31 µm) cancer cell lines in vitro, respectively. Shikonin (IC50  = 0.46 ± 0.002 µm, 4.80 ± 0.48 µm) and colchicine (IC50  = 0.75 ± 0.05 µm, 17.79 ± 0.76 µm) were used as references. Meanwhile, they also showed the most potent growth inhibitory activity against tubulin (IC50 of 3.96  ± 0.13 µm and 3.05 ± 0.30 µm, respectively), which were compared with shikonin (IC50  =  15.20 ± 0.25 µm) and colchicine (IC50  = 3.50 ± 0.35 µm). Furthermore, from the results of flow cytometer, we found compound 3 can really inhibit HeLa cell proliferation and has low cell toxicity. Based on the preliminary results, compound 3 with potent inhibitory activity in tumor growth may be a potential anticancer agent.


Subject(s)
Indoles/chemical synthesis , Indoles/pharmacology , Naphthoquinones/chemistry , Naphthoquinones/chemical synthesis , Naphthoquinones/pharmacology , Thiophenes/chemical synthesis , Thiophenes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Colchicine/chemical synthesis , Colchicine/chemistry , Colchicine/pharmacology , HeLa Cells , Humans , Indoles/chemistry , Molecular Docking Simulation , Protein Structure, Tertiary , Thiophenes/chemistry , Tubulin/chemistry , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology
5.
J Chem Phys ; 132(2): 024506, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-20095686

ABSTRACT

Intermolecular interaction potentials of the carbon tetrachloride dimer in 12 orientations have been calculated using the Hartree-Fock self-consistent theory and the second-order Moller-Plesset (MP2) perturbation theory. We have employed basis sets from Pople's medium size basis sets [up to 6-311++G(3df,3pd)] to Dunning's correlation consistent basis sets (up to aug-cc-pVQZ). The calculated MP2 potential data were employed to parametrize a four-site force field for molecular simulations. We performed molecular dynamics simulations using the ab initio force field and compared the simulation results to experiments. Quantitative agreements for the atomwise radial distribution functions, the self-diffusion coefficients, and the neutron and x-ray diffraction scattering functions over a wide range of experimental conditions can be obtained, thus validating the ab initio force field without using experimental data a priori.

SELECTION OF CITATIONS
SEARCH DETAIL
...