Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Cell ; 84: 102185, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37531875

ABSTRACT

Hematopoietic stem and progenitor cell (HSPC) research will help elucidate the pathogenesis of hematologic diseases. The present study aimed to establish an isolation method and culture system for chicken bone marrow (BM)-derived HSPCs and test their proliferation and differentiation abilities. Mononuclear cells were collected from chicken BM, and CD34+ HSPCs were isolated. Then, the cells were cultured in media with different cytokine compositions, and the growth status, cell phenotype, and morphological appearance of the cells were analyzed at different time points. Our results showed that Iscove's Modified Dulbecco's Medium supplemented with 50 ng/mL stem cell factor, 30 ng/mL Flt-3 ligand, 10 µg/mL interleukin 3, 50 ng/mL interleukin 6%, and 10% chicken serum supported chicken CD34+ HSPC survival ex vivo for approximately 10 d. Further, 80 ng/mL granulocyte-colony stimulating factor and 30 ng/mL granulocyte macrophage-colony stimulating factor were added into the above culture system to form a myeloid cell differentiation induction culture system. After culturing in this system for 72 h, approximately 66% of chicken CD34+ HSPCs exhibited a CD11b+ phenotype, indicating that HSPCs differentiated into myeloid cells. In conclusion, chicken BM-derived CD34+ cells possess HSPC characteristics that can self-renew and differentiate into myeloid cells in a culture medium containing growth factors.


Subject(s)
Bone Marrow , Chickens , Animals , Antigens, CD34 , Hematopoietic Stem Cells , Cell Differentiation , Myeloid Cells , Bone Marrow Cells , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...