Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 660: 124257, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38782154

ABSTRACT

Cannabinoids can save paediatric patients from harmful psychological conditions caused by epilepsy. However, the limited aqueous solubility of the drug presents a limitation to oral absorption and bioavailability. Previous studies have shown the enhancement of oral bioavailability for poorly water-soluble drugs using milk or milk-based products like infant formula as a novel lipid-based formulation, due to digestion of the lipids to enhance drug solubility that is particularly well suited to infants and in low economy settings. Therefore, this study has investigated the in vitro solubilisation enhancement of cannabidiol (CBD) in milk-based products during digestion using synchrotron small angle X-ray scattering, followed by pharmacokinetic studies to determine the relative oral bioavailability. The in vitro results, coupled with in vivo data, demonstrate a two-fold increase in the oral bioavailability of CBD in bovine milk as well as infant formula. The results of this study indicate the potential for infant formula to be considered as a novel formulation approach for CBD. Further study is encouraged for more drugs with infant formula to strengthen the correlation between the solubilisation of drug and their oral bioavailability.


Subject(s)
Biological Availability , Cannabidiol , Infant Formula , Milk , Solubility , Cannabidiol/pharmacokinetics , Cannabidiol/administration & dosage , Cannabidiol/chemistry , Infant Formula/chemistry , Administration, Oral , Animals , Humans , Infant , Milk/chemistry , Male , Lipids/chemistry , Cattle
2.
Nano Lett ; 24(17): 5139-5145, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38639471

ABSTRACT

Dynamic tuning of thermal transport in solids is scientifically intriguing with wide applications for thermal transport control in electronic devices. In this work, we demonstrate a thermal transistor, a device in which heat flow can be regulated using external control, realized in a topological insulator (TI) through the topological surface states. The tuning of thermal transport is achieved by using optical gating of a thin dielectric layer deposited on the TI film. The gate-dependent thermal conductivity is measured using micro-Raman thermometry. The transistor has a large ON/OFF ratio of 2.8 at room temperature and can be continuously and repetitively switched in tens of seconds by optical gating and potentially much faster by electrical gating. Such thermal transistors with a large ON/OFF ratio and fast switching times offer the possibilities of smart thermal devices for active thermal management and control in future electronic systems.

3.
Nano Lett ; 23(8): 3599-3606, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37057864

ABSTRACT

Chirality arises from the asymmetry of materials, where two counterparts are the mirror image of each other. The interaction between circular-polarized light and quantum materials is enhanced in chiral space groups due to the structural chirality. Tellurium (Te) possesses the simplest chiral crystal structure, with Te atoms covalently bonded into a spiral atomic chain (left- or right-handed) with a periodicity of 3. Here, we investigate the tunable circular photoelectric responses in 2D Te field-effect transistors with different chirality, including the longitudinal circular photogalvanic effect induced by the radial spin texture (electron-spin polarization parallel to the electron momentum direction) and the circular photovoltaic effect induced by the chiral crystal structure (helical Te atomic chains). Our work demonstrates the controllable manipulation of the chirality degree of freedom in materials.

4.
Sci Rep ; 10(1): 16761, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33028944

ABSTRACT

Three-dimensional topological insulators have been demonstrated in recent years, which possess intriguing gapless, spin-polarized Dirac states with linear dispersion only on the surface. The spin polarization of the topological surface states is also locked to its momentum, which allows controlling motion of electrons using optical helicity, i.e., circularly polarized light. The electrical and thermal transport can also be significantly tuned by the helicity-control of surface state electrons. Here, we report studies of photo-thermoelectric effect of the topological surface states in Bi2Te2Se thin films with large tunability using varied gate voltages and optical helicity. The Seebeck coefficient can be altered by more than five times compared to the case without spin injection. This deep tuning is originated from the optical helicity-induced photocurrent which is shown to be enhanced, reduced, turned off, and even inverted due to the change of the accessed band structures by electrical gating. The helicity-selected topological surface state thus has a large effect on thermoelectric transport, demonstrating great opportunities for realizing helicity control of optoelectronic and thermal devices.

5.
Nano Lett ; 19(3): 1955-1962, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30753783

ABSTRACT

Tellurium (Te) is an intrinsically p-type-doped narrow-band gap semiconductor with an excellent electrical conductivity and low thermal conductivity. Bulk trigonal Te has been theoretically predicted and experimentally demonstrated to be an outstanding thermoelectric material with a high value of thermoelectric figure-of-merit ZT. In view of the recent progress in developing the synthesis route of 2D tellurium thin films as well as the growing trend of exploiting nanostructures as thermoelectric devices, here for the first time, we report the excellent thermoelectric performance of tellurium nanofilms, with a room-temperature power factor of 31.7 µW/cm K2 and ZT value of 0.63. To further enhance the efficiency of harvesting thermoelectric power in nanofilm devices, thermoelectrical current mapping was performed with a laser as a heating source, and we found that high work function metals such as palladium can form rare accumulation-type metal-to-semiconductor contacts to Te, which allows thermoelectrically generated carriers to be collected more efficiently. High-performance thermoelectric Te devices have broad applications as energy harvesting devices or nanoscale Peltier coolers in microsystems.

6.
ACS Nano ; 12(2): 1120-1127, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29361229

ABSTRACT

Topological insulators (TI) have attracted extensive research effort due to their insulating bulk states but conducting surface states. However, investigation and understanding of thermal transport in topological insulators, particularly the effect of surface states, are lacking. In this work, we studied thickness-dependent in-plane thermal and electrical conductivity of Bi2Te2Se TI thin films. A large enhancement in both thermal and electrical conductivity was observed for films with thicknesses below 20 nm, which is attributed to the surface states and bulk-insulating nature of these films. Moreover, a surface Lorenz number much larger than the Sommerfeld value was found. Systematic transport measurements indicated that the Fermi surface is located near the charge neutrality point (CNP) when the film thickness is below 20 nm. Possible reasons for the large Lorenz number include electrical and thermal current decoupling in the surface state Dirac fluid, and bipolar diffusion transport. A simple computational model indicates that the surface states and bipolar diffusion indeed can lead to enhanced electrical and thermal transport and a large Lorenz number.

SELECTION OF CITATIONS
SEARCH DETAIL
...