Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124315, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38688213

ABSTRACT

In this study, Cu-doped NH2-MIL-88(Fe) metal-organic frameworks (MOF) were synthesized via a one-step method. Characterization techniques such as XPS, XRD and FTIR confirmed the successful incorporation of Cu2+ into NH2-MIL-88(Fe), naming this MOF as NH2-MIL-88(Fe)@Cu2+. This MOF was employed to develop a highly sensitive fluorescence sensing platform for detecting 3-nitro-L-tyrosine(3-NT). The potential for fluorescence resonance energy transfer (FRET) was suggested by the spectral overlap between NH2-MIL-88(Fe)@Cu2+'s emission and 3-NT's UV absorption. To augment this effect, cationic surfactant hexadecyltrimethylammonium bromide (CTAB), which self-assembled into nanostructured microspheres above its critical micelle concentration, was utilized. The charged surface of these microspheres, formed by the self-assembly of CTAB, is bound to the MOF surface through electrostatic force and simultaneously attracts 3-NT. Adjusting the solution's pH strengthened the interaction between NH2-MIL-88(Fe)@Cu2+ and 3-NT, thereby enhancing their mutual FRET interaction. Experimental results indicated that CTAB's introduction markedly improved the FRET effects, potentially converting a weak FRET into a strong one and enhancing detection sensitivity and accuracy. Under optimal conditions, NH2-MIL-88(Fe)@Cu2+ detected 3-NT within 0-30 µM range, with a limit of detection (LOD, S/N = 3) of 41.1 nM. Finally, the applicability of the sensor is tested by calibrating measurements in fetal bovine serum samples, achieving good performance in terms of sensitivity, selectivity and reproducibility. This research provides a method for efficient and highly sensitive 3-NT detection and insights into the FRET effect between MOF and target molecules, likely advancing related fields and inspiring future fluorescence sensor designs.

2.
Nat Commun ; 15(1): 2062, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453927

ABSTRACT

Metal-nitrogen-carbon catalysts with hierarchically dispersed porosity are deemed as efficient geometry for oxygen reduction reaction (ORR). However, catalytic performance determined by individual and interacting sites originating from structural heterogeneity is particularly elusive and yet remains to be understood. Here, an efficient hierarchically porous Fe single atom catalyst (Fe SAs-HP) is prepared with Fe atoms densely resided at micropores and mesopores. Fe SAs-HP exhibits robust ORR performance with half-wave potential of 0.94 V and turnover frequency of 5.99 e-1s-1site-1 at 0.80 V. Theoretical simulations unravel a structural heterogeneity induced optimization, where mesoporous Fe-N4 acts as real active centers as a result of long-range electron regulation by adjacent microporous sites, facilitating O2 activation and desorption of key intermediate *OH. Multilevel operando characterization results identify active Fe sites undergo a dynamic evolution from basic Fe-N4 to active Fe-N3 under working conditions. Our findings reveal the structural origin of enhanced intrinsic activity for hierarchically porous Fe-N4 sites.

3.
ACS Appl Mater Interfaces ; 16(2): 2489-2496, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38180749

ABSTRACT

Thin films of ferrimagnetic iron garnets can exhibit useful magnetic properties, including perpendicular magnetic anisotropy (PMA) and high domain wall velocities. In particular, bismuth-substituted yttrium iron garnet (BiYIG) films grown on garnet substrates have a low Gilbert damping but zero Dzyaloshinskii-Moriya interaction (DMI), whereas thulium iron garnet (TmIG) films have higher damping but a nonzero DMI. We report the damping and DMI of thulium-substituted BiYIG (BiYTmIG) and TmIG|BiYIG bilayer thin films deposited on (111) substituted gadolinium gallium garnet and neodymium gallium garnet (NGG) substrates. The films are epitaxial and exhibit PMA. BiYIG|TmIG bilayers have a damping value that is an order of magnitude lower than that of TmIG, and BiYIG|TmIG|NGG have DMI of 0.0145 ± 0.0011 mJ/m2, similar to that of TmIG|NGG. The bilayer therefore provides a combination of DMI and moderate damping, useful for the development of high-speed spin orbit torque-driven devices.

4.
Ecotoxicol Environ Saf ; 253: 114659, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36812869

ABSTRACT

Glyphosate (GLY) is the most widely used herbicide worldwide, and its effects on animals and plants have attracted increasing attention. In this study, we explored the following: (1) the effects of multigenerational chronic exposure to GLY and H2O2, alone or in combination, on the egg hatching rate and individual morphology of Pomacea canaliculata; and (2) the effects of short-term chronic exposure to GLY and H2O2, alone or in combination, on the reproductive system of P. canaliculata. The results showed that H2O2 and GLY exposure had distinct inhibitory effects on the hatching rate and individual growth indices with a substantial dose effect, and the F1 generation had the lowest resistance. In addition, with the prolongation of exposure time, the ovarian tissue was damaged, and the fecundity decreased; however, the snails could still lay eggs. In conclusion, these results suggest that P. canaliculata can tolerate low concentrations of pollution and in addition to drug dosage, the control should focus on two time points, the juvenile and early stage of spawning.


Subject(s)
Hydrogen Peroxide , Reproduction , Animals , Hydrogen Peroxide/pharmacology , Snails , Oxidative Stress , Glyphosate
5.
Drug Deliv ; 30(1): 2162156, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36600637

ABSTRACT

In order to precisely deliver celastrol into mitochondria of tumor cells, improve antitumor efficacy of celastrol and overcome its troublesome problems in clinical application, a novel multistage-targeted celastrol delivery system (C-TL/HA) was developed via electrostatic binding of hyaluronic acid (HA) to celastrol-loaded cationic liposomes composed of natural soybean phosphatidylcholine and cholesterol modified with mitochondrial targeting molecular TPP. Study results in this article showed that C-TL/HA successfully transported celastrol into mitochondria, effectively activated apoptosis of mitochondrial pathway, exerted higher tumor inhibition efficiency and lower toxic side effects compared with free celastrol. More importantly, HA coating not only enabled this delivery system to have good stability and safety in vivo, but also increased drug uptake and facilitated tumor targeting through recognizing CD44 receptors rich on the surface of tumor cells. Conclusively, this HA-coated mitochondrial targeting liposomes may provide a prospect for the clinical application of celastrol in tumor therapy.


Subject(s)
Hyaluronic Acid , Liposomes , Liposomes/chemistry , Hyaluronic Acid/chemistry , Pentacyclic Triterpenes/pharmacology , Mitochondria , Drug Delivery Systems/methods , Cell Line, Tumor
6.
Chem Sci ; 13(19): 5639-5649, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35694335

ABSTRACT

One of the most successful approaches for balancing the high stability and activity of water oxidation in alkaline solutions is to use amorphous and crystalline heterostructures. However, due to the lack of direct evidence at the molecular level, the nano/micro processes of amorphous and crystalline heterostructure electrocatalysts, including self-reconstruction and reaction pathways, remain unknown. Herein, the Leidenfrost effect assisted electrospray approach combined with phase separation was used for the first time to create amorphous NiO x /crystalline α-Fe2O3 (a-NiO x /α-Fe2O3) nanowire arrays. The results of in situ Raman spectroscopy demonstrate that with the increase of the potential at the a-NiO x /α-Fe2O3 interface, a significant accumulation of OH can be observed. Combining with XAS spectra and DFT calculations, we believe that more OH adsorption on the Ni centers can facilitate Ni2+ deprotonation to achieve the high-valence oxidation of Ni4+ according to HSAB theory (Fe3+ serves as a strong Lewis acid). This result promotes the electrocatalysts to follow the lattice oxygen activation mechanism. This work, for the first time, offers direct spectroscopic evidence for deepening the fundamental understanding of the Lewis acid effect of Fe3+, and reveals the synergistic effect on water oxidation via the unique amorphous and crystalline heterostructures.

7.
Exp Clin Endocrinol Diabetes ; 129(9): 625-633, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32961563

ABSTRACT

BACKGROUND: Obesity is a major health problem worldwide, and non-alcoholic fatty pancreas disease (NAFPD) and non-alcoholic fatty liver disease (NAFLD) are obesity-associated complications. Liraglutide, a glucagon-like peptide-1 (GLP-1) agonist, has been approved for treatment of obesity. We aimed to evaluate the therapeutic effects of liraglutide on the complications through its regulation of endoplasmic reticulum (ER) stress. METHODS: A high-fat diet mouse model was established in C57BL/6J mice. Two groups of mice were fed a high-fat diet with 60% fat for 16 weeks and control mice were fed standard chow. A four-week 0.6 mg/kg/day liraglutide treatment was started in one high-fat diet group after 12 weeks of the high-fat diet. After sacrificing the mice, pancreatic and hepatic tissues were prepared for western blot and immunohistochemistry for ER stress proteins, including activating transcription factor 4 (ATF4), caspase 12, C/EBP homologous protein (CHOP) eukaryotic initiation factor 2 α (eIF2α), glucose regulated protein (GRP) 78 and protein kinase RNA-like endoplasmic reticulum kinase (PERK). RESULTS: Liraglutide significantly decreased body weight gained by mice consuming a high-fat diet (27.6 g vs. 34.5 g, P<0.001), and levels of all ER proteins increased significantly in both the pancreas and liver (all P<0.05). Expression of most ER stress proteins in pancreatic tissue correlated with disease scores of NAFLD (all P<0.05). However, no significant differences were found in pancreatic ATF 4 expression between mice without NAFLD, and those with early non-alcoholic steatohepatitis (NASH) and fibrotic NASH (P=0.122). CONCLUSION: Liraglutide may reduce the severity of NAFPD and NAFLD through regulating the ER stress pathway and downstream apoptosis signaling.


Subject(s)
Endoplasmic Reticulum Stress/drug effects , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/pharmacology , Liraglutide/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Obesity/drug therapy , Pancreatic Diseases/drug therapy , Animals , Diet, High-Fat , Disease Models, Animal , Hypoglycemic Agents/administration & dosage , Liraglutide/administration & dosage , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Obesity/complications , Pancreatic Diseases/etiology
8.
Nat Mater ; 20(1): 30-37, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33020615

ABSTRACT

Topological states of matter exhibit fascinating physics combined with an intrinsic stability. A key challenge is the fast creation of topological phases, which requires massive reorientation of charge or spin degrees of freedom. Here we report the picosecond emergence of an extended topological phase that comprises many magnetic skyrmions. The nucleation of this phase, followed in real time via single-shot soft X-ray scattering after infrared laser excitation, is mediated by a transient topological fluctuation state. This state is enabled by the presence of a time-reversal symmetry-breaking perpendicular magnetic field and exists for less than 300 ps. Atomistic simulations indicate that the fluctuation state largely reduces the topological energy barrier and thereby enables the observed rapid and homogeneous nucleation of the skyrmion phase. These observations provide fundamental insights into the nature of topological phase transitions, and suggest a path towards ultrafast topological switching in a wide variety of materials through intermediate fluctuating states.

9.
Front Oncol ; 10: 1676, 2020.
Article in English | MEDLINE | ID: mdl-33014836

ABSTRACT

BACKGROUND: The grading and pathologic biomarkers of glioma has important guiding significance for the individual treatment. In clinical, it is often necessary to obtain tumor samples through invasive operation for pathological diagnosis. The present study aimed to use conventional machine learning algorithms to predict the tumor grades and pathologic biomarkers on magnetic resonance imaging (MRI) data. METHODS: The present study retrospectively collected a dataset of 367 glioma patients, who had pathological reports and underwent MRI scans between October 2013 and March 2019. The radiomic features were extracted from enhanced MRI images, and three frequently-used machine-learning models of LC, Support Vector Machine (SVM), and Random Forests (RF) were built for four predictive tasks: (1) glioma grades, (2) Ki67 expression level, (3) GFAP expression level, and (4) S100 expression level in gliomas. Each sub dataset was split into training and testing sets at a ratio of 4:1. The training sets were used for training and tuning models. The testing sets were used for evaluating models. According to the area under curve (AUC) and accuracy, the best classifier was chosen for each task. RESULTS: The RF algorithm was found to be stable and consistently performed better than Logistic Regression and SVM for all the tasks. The RF classifier on glioma grades achieved a predictive performance (AUC: 0.79, accuracy: 0.81). The RF classifier also achieved a predictive performance on the Ki67 expression (AUC: 0.85, accuracy: 0.80). The AUC and accuracy score for the GFAP classifier were 0.72 and 0.81. The AUC and accuracy score for S100 expression levels are 0.60 and 0.91. CONCLUSION: The machine-learning based radiomics approach can provide a non-invasive method for the prediction of glioma grades and expression levels of multiple pathologic biomarkers, preoperatively, with favorable predictive accuracy and stability.

10.
Sci Rep ; 10(1): 16454, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33020518

ABSTRACT

The pathophysiological differences between menstrually-related migraine (MRM) and pure menstrual migraine (PMM) are largely unclear. The aim of this study was to investigate the potential differences in brain structure and function between PMM and MRM. Forty-eight menstrual migraine patients (32 MRM; 16 PMM) were recruited for this study. Voxel-based morphometry (VBM) was applied on structural magnetic resonance imaging (sMRI), and the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) in resting state functional MRI (rsfMRI) were calculated. No significant between-group difference was observed in the grey matter volume (GMV). MRM patients exhibited lower ALFF values at the dorsolateral prefrontal cortex (DLPFC) and medial prefrontal cortex (mPFC) than PMM patients. Moreover, the MRM group showed significantly higher ReHo values in the DLPFC. Higher values in the mPFC were related to higher expression of calcitonin gene-associated peptide (CGRP) in the PMM group (r = 0.5, P = 0.048). Combined ALFF and ReHo analyses revealed significantly different spontaneous neural activity in the DLPFC and mPFC, between MRM and PMM patients, and ALFF values in the mPFC were positively correlated with CGRP expression, in the PMM group. This study enhances our understanding of the relationship between neural abnormalities and CGRP expression in individuals with PMM.


Subject(s)
Brain/physiopathology , Migraine Disorders/physiopathology , Adolescent , Adult , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Rest/physiology , Young Adult
11.
Medicine (Baltimore) ; 98(45): e17844, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31702641

ABSTRACT

BACKGROUND: Several treatments are beneficial for patients with cancer-related pain (CRP), and there are numbers of systematic reviews evaluating the effectiveness and safety of these treatments. However, the overall quality of the evidence has not been quantitatively assessed. The aim of this study is to overcome the inconclusive evidence about the interventions of CRP. METHODS: We will perform an umbrella systematic review to identify eligible randomised controlled trials (RCTs). A comprehensive literature search will be conducted in MEDLINE, EMBASE, and the Cochrane library for systematic reviews, meta-analyses and RCTs. We will describe the general information of the RCTs for participants, interventions, outcome measurements, comparisons, and results. Network meta-analysis will be developed to determine the comparative effectiveness of the treatments. RESULTS: The result of this network meta-analysis will provide direct and indirect evidence of treatments for CRP. CONCLUSION: The conclusion of our study will help clinicians and CRP patients to choose suitable treatment options. ETHICS AND DISSEMINATION: Formal ethical approval is not required, as the data are not individualized. The findings of this systematic review will be disseminated in a peer-reviewed publication and/or presented at relevant conferences. PROSPERO REGISTRATION NUMBER: CRD42019131721.


Subject(s)
Cancer Pain/therapy , Pain Management/methods , Humans , Network Meta-Analysis , Randomized Controlled Trials as Topic , Research Design , Meta-Analysis as Topic
12.
Biosens Bioelectron ; 144: 111692, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31522099

ABSTRACT

A highly flexible electrochemical assay based on target-triggered DNAzyme spiders was proposed for the detection of telomerase. The DNAzyme-telomerase substrate primers (D-TSP) containing Cu2+-dependent DNAzymes serve as recognition elements, and primers of telomerase. Telomerase extracted from Hela cells recognize the D-TSP and elongated with DNA sequence repeats. A synthetic telomerase product hybridized with scaffold sequences of two DNAzyme-tethered probes on the basis of the mechanism of the proximity-ligation assay. The three-leg DNAzyme spiders has been assembled and initiated the autonomous hybridization/nicking/displacement cycles on substrate modified surface. The cleaved ferrocene-labeled fragements are adsorbed on gold surface leading to an increase in the electrochemical signal. As a result, the one input target, telomerase, release large amount of ferrocene-labeled DNA strands, achieving an exponential signal amplification and an excellent improvement in sensitivity over single molecule or two-component 'sandwich' binding complexes. Our proposed biosensor showed a nonlinear dependence with Hela cell numbers, ranging from 25 to 2000 with a detection limit of 10 cells. Telomerase activities from different cell lines were also successfully evaluated. Our electrochemical strategy based on target-triggered DNAzyme spiders was enzyme-free, PCR-free, simple in operation which indicated that it expected to expand the scope of DNA nanotechnology in the areas of clinical diagnosis.


Subject(s)
Biosensing Techniques , DNA, Catalytic/chemistry , Nucleic Acid Hybridization , Telomerase/isolation & purification , DNA/chemistry , DNA/genetics , Gold/chemistry , HeLa Cells , Humans , Telomerase/chemistry
13.
J Am Coll Cardiol ; 73(1): 58-66, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30621952

ABSTRACT

BACKGROUND: Spontaneous coronary artery dissection (SCAD) is an increasingly recognized cause of acute coronary syndromes (ACS) afflicting predominantly younger to middle-aged women. Observational studies have reported a high prevalence of extracoronary vascular anomalies, especially fibromuscular dysplasia (FMD) and a low prevalence of coincidental cases of atherosclerosis. PHACTR1/EDN1 is a genetic risk locus for several vascular diseases, including FMD and coronary artery disease, with the putative causal noncoding variant at the rs9349379 locus acting as a potential enhancer for the endothelin-1 (EDN1) gene. OBJECTIVES: This study sought to test the association between the rs9349379 genotype and SCAD. METHODS: Results from case control studies from France, United Kingdom, United States, and Australia were analyzed to test the association with SCAD risk, including age at first event, pregnancy-associated SCAD (P-SCAD), and recurrent SCAD. RESULTS: The previously reported risk allele for FMD (rs9349379-A) was associated with a higher risk of SCAD in all studies. In a meta-analysis of 1,055 SCAD patients and 7,190 controls, the odds ratio (OR) was 1.67 (95% confidence interval [CI]: 1.50 to 1.86) per copy of rs9349379-A. In a subset of 491 SCAD patients, the OR estimate was found to be higher for the association with SCAD in patients without FMD (OR: 1.89; 95% CI: 1.53 to 2.33) than in SCAD cases with FMD (OR: 1.60; 95% CI: 1.28 to 1.99). There was no effect of genotype on age at first event, P-SCAD, or recurrence. CONCLUSIONS: The first genetic risk factor for SCAD was identified in the largest study conducted to date for this condition. This genetic link may contribute to the clinical overlap between SCAD and FMD.


Subject(s)
Coronary Vessel Anomalies/epidemiology , Coronary Vessel Anomalies/genetics , Endothelin-1/genetics , Fibromuscular Dysplasia/complications , Genetic Loci/genetics , Microfilament Proteins/genetics , Vascular Diseases/congenital , Adult , Aged , Australia , Case-Control Studies , Coronary Vessel Anomalies/complications , Female , Fibromuscular Dysplasia/genetics , France , Humans , Male , Middle Aged , Prevalence , United Kingdom , United States , Vascular Diseases/complications , Vascular Diseases/epidemiology , Vascular Diseases/genetics
14.
Polymers (Basel) ; 10(7)2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30960647

ABSTRACT

A facile and efficient approach for design and synthesis of organic fluorescent nanogels has been developed by using a pre-synthesized polymeric precursor. This strategy is achieved by two key steps: (i) precise synthesis of core⁻shell star-shaped block copolymers with crosslinkable AIEgen-precursor (AIEgen: aggregation induced emission luminogen) as pending groups on the inner blocks; (ii) gelation of the inner blocks by coupling the AIEgen-precursor moieties to generate AIE-active spacers, and thus, fluorescent nanogel. By using this strategy, a series of star-shaped block copolymers with benzophenone groups pending on the inner blocks were synthesized by grafting from a hexafunctional initiator through atom transfer radical copolymerization (ATRP) of 4-benzoylphenyl methacrylate (BPMA) or 2-(4-benzoylphenoxy)ethyl methacrylate (BPOEMA) with methyl methacrylate (MMA) and tert-butyldimethylsilyl-protected 2-hydroxyethyl methacrylate (ProHEMA) followed by a sequential ATRP to grow PMMA or PProHEMA. The pendent benzophenone groups were coupled by McMurry reaction to generate tetraphenylethylene (TPE) groups which served as AIE-active spacers, affording a fluorescent nanogel. The nanogel showed strong emission not only at aggregated state but also in dilute solution due to the strongly restricted inter- and intramolecular movement of TPE moiety in the crosslinked polymeric network. The nanogel has been used as a fluorescent macromolecular additive to fabricate fluorescent film.

15.
Sci Rep ; 7(1): 11207, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28894120

ABSTRACT

Efficient interventions to reduce blood triglycerides are few; newer and more tolerable intervention targets are needed. Understanding the molecular mechanisms underlying blood triglyceride levels variation is key to identifying new therapies. To explore the role of epigenetic mechanisms on triglyceride levels, a blood methylome scan was conducted in 199 individuals from 5 French-Canadian families ascertained on venous thromboembolism, and findings were replicated in 324 French unrelated patients with venous thromboembolism. Genetic context and functional relevance were investigated. Two DNA methylation sites associated with triglyceride levels were identified. The first one, located in the ABCG1 gene, was recently reported, whereas the second one, located in the promoter of the PHGDH gene, is novel. The PHGDH methylation site, cg14476101, was found to be associated with variation in triglyceride levels in a threshold manner: cg14476101 was inversely associated with triglyceride levels only when triglyceride levels were above 1.12 mmol/L (discovery P-value = 8.4 × 10-6; replication P-value = 0.0091). Public databases findings supported a functional role of cg14476101 on PHGDH expression. PHGDH catalyses the first step in the serine biosynthesis pathway. These findings highlight the role of epigenetic regulation of the PHGDH gene in triglyceride metabolism, providing novel insights on putative intervention targets.


Subject(s)
DNA Methylation , Phosphoglycerate Dehydrogenase/genetics , Promoter Regions, Genetic , Triglycerides/blood , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , Adult , Canada , Epigenesis, Genetic , Family Health , Female , Humans , Male , Middle Aged , Young Adult
16.
Environ Health Perspect ; 124(6): 868-74, 2016 06.
Article in English | MEDLINE | ID: mdl-26645203

ABSTRACT

BACKGROUND: Previous studies suggest that blood lead levels are positively associated with attention deficit/hyperactivity disorder (ADHD) and ADHD-symptoms in children. However, the associations between lead exposure and ADHD subtypes are inconsistent and understudied. OBJECTIVE: The objective of this study was to explore the association of low-level concurrent lead exposure with subtypes of ADHD symptoms in 578 Mexican children 6-13 years of age. METHODS: We measured concurrent blood lead levels using inductively coupled plasma mass spectrometry (ICPMS). We administered the Conners' Rating Scales-Revised (CRS-R) to mothers to evaluate their children's ADHD symptoms. We used imputation to fill missing values in blood lead levels and used segmented regression models adjusted for relevant covariates to model the nonlinear relationship between blood lead and ADHD symptoms. RESULTS: Mean ± SD blood lead levels were 3.4 ± 2.9 µg/dL. In adjusted models, a 1-µg/dL increase in blood lead was positively associated with Hyperactivity and Restless-Impulsivity scores on the CRS-R scale and Hyperactivity-Impulsivity scores on the CRS-R scale of the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, but only in children with blood lead level ≤ 5 µg/dL. Blood lead was not associated with Inattentive symptoms or overall ADHD behavior. CONCLUSIONS: In this population of Mexican children, current blood lead level among children with low exposure (≤ 5 µg/dL) was positively associated with hyperactive/impulsive behaviors, but not with inattentiveness. These results add to the existing evidence of lead-associated neurodevelopmental deficits at low levels of exposure. CITATION: Huang S, Hu H, Sánchez BN, Peterson KE, Ettinger AS, Lamadrid-Figueroa H, Schnaas L, Mercado-García A, Wright RO, Basu N, Cantonwine DE, Hernández-Avila M, Téllez-Rojo MM. 2016. Childhood blood lead levels and symptoms of attention deficit hyperactivity disorder (ADHD): a cross-sectional study of Mexican children. Environ Health Perspect 124:868-874; http://dx.doi.org/10.1289/ehp.1510067.


Subject(s)
Attention Deficit Disorder with Hyperactivity/epidemiology , Environmental Exposure/statistics & numerical data , Environmental Pollutants/blood , Lead/blood , Adolescent , Child , Female , Humans , Male , Mexico/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...