Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vasc Res ; : 1-15, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749406

ABSTRACT

INTRODUCTION: Acquisition of a deeper understanding of microvascular function across physiological and pathological conditions can be complicated by poor accessibility of the vascular networks and the necessary sophistication or intrusiveness of the equipment needed to acquire meaningful data. Laser Doppler fluximetry (LDF) provides a mechanism wherein investigators can readily acquire large amounts of data with minor inconvenience for the subject. However, beyond fairly basic analyses of erythrocyte perfusion (fluximetry) data within the cutaneous microcirculation (i.e., perfusion at rest and following imposed challenges), a deeper understanding of microvascular perfusion requires a more sophisticated approach that can be challenging for many investigators. METHODS: This manuscript provides investigators with clear guidance for data acquisition from human subjects for full analysis of fluximetry data, including levels of perfusion, single- and multiscale Lempel-Ziv complexity (LZC) and sample entropy (SampEn), and wavelet-based analyses for the major physiological components of the signal. Representative data and responses are presented from a recruited cohort of healthy volunteers, and computer codes for full data analysis (MATLAB) are provided to facilitate efforts by interested investigators. CONCLUSION: It is anticipated that these materials can reduce the challenge to investigators integrating these approaches into their research programs and facilitate translational research in cardiovascular science.

2.
J Vasc Res ; 60(1): 12-68, 2023.
Article in English | MEDLINE | ID: mdl-36843014

ABSTRACT

Research involving human subjects in ambulatory settings is a critical link in the chain comprising translational research, spanning preclinical research to human subject and patient cohort studies. There are presently a wide array of techniques and approaches available to investigators wishing to study blood flow, perfusion, and vascular structure and function in human subjects. In this multi-sectioned review, we discuss capillaroscopy, carotid intima-media thickness, flow-mediated dilation, laser Doppler flowmetry, near-infrared spectroscopy, peripheral arterial tonometry, pulse wave velocity, retinal fundus imaging, and vascular plethysmography. Each section contains a general overview and the physical basis of the technique followed by a discussion of the procedures involved and the necessary equipment, with attention paid to specific requirements or limitations. Subsequently, we detail which aspects of vascular function can be studied with a given technique, the analytical approach to the collected data, and the appropriate application and limitation(s) to the interpretation of the data collected. Finally, a modified scoping review provides a summary of how each assessment technique has been applied in previous studies. It is anticipated that this review will provide an efficient source of information and insight for preclinical investigators seeking to add translational aspects to their research programs.


Subject(s)
Carotid Intima-Media Thickness , Pulse Wave Analysis , Humans , Pulse Wave Analysis/methods , Translational Research, Biomedical , Blood Flow Velocity/physiology , Perfusion
SELECTION OF CITATIONS
SEARCH DETAIL
...