Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; 45(12): e2400059, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38538294

ABSTRACT

Many crucial components inside electronic devices are made from non-renewable, non-biodegradable, and potentially toxic materials, leading to environmental damage. Finding alternative green dielectric materials is mandatory to align with global sustainable goals. Carboxymethyl cellulose (CMC) is a bio-polymer derived from cellulose and has outstanding properties. Herein, citric acid, dextrin, and CMC based hydrogels are prepared, which are biocompatible and biodegradable and exhibit rubber-like mechanical properties, with Young modulus values of 0.89 MPa. Hence, thin film CMC-based hydrogel is explored as a suitable green high-k dielectric candidate for operation at low voltages, demonstrating a high dielectric constant of up to 78. These fabricated transistors reveal stable high capacitance (2090 nF cm-2) for ≈±3 V operation. Using a polyelectrolyte-type approach and poly-(2-vinyl anthracene) (PVAn) surface modification, this study demonstrates a thin dielectric layer (d ≈30 nm) with a small voltage threshold (Vth ≈-0.8 V), moderate transconductance (gm ≈65 nS), and high ON-OFF ratio (≈105). Furthermore, the dielectric layer exhibits stable performance under bias stress of ± 3.5 V and 100 cycles of switching tests. The modified CMC-based hydrogel demonstrates desirable performance as a green dielectric for low-voltage operation, further highlighting its biocompatibility.


Subject(s)
Carboxymethylcellulose Sodium , Dextrins , Hydrogels , Dextrins/chemistry , Carboxymethylcellulose Sodium/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Biocompatible Materials/chemistry , Green Chemistry Technology
2.
Sci Rep ; 13(1): 21230, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38040821

ABSTRACT

Oyster Farming is one of important fisheries and aquaculture industries in Taiwan. Each year, approximately 4000-5000 tons of discarded bamboo scaffolding (BS) used in oyster farming, are generated, so the treatment and utilization of BS should be taken seriously. This study evaluates the suitability of BS for pulp and papermaking by assessing the chemical compositions, microstructural, and fiber morphology. The pulping properties is investigated by soda pulping. The chemical composition of BS shows the potential for application in pulping. The BS microstructure shows that can enhance pulping reactions, while the fiber morphology indicates the possibility of producing high-strength paper. Through the pulping experiment, it demonstrated that BS is suitable for pulping with lower NaOH dosage and longer digestion time. The condition at 170 °C with 14% NaOH dosage for 90 min digestion has the highest yield. After refining the highest pulping yield BS pulp, it can improve the handsheet strength and bulk of the OCC-BS mixed pulp, which can achieve the strength property required for industrial paper. In summary, BS exhibits the potential for pulping application and produces a better paper strength than OCC pulp, exhibiting the feasibility of enhancing the circular utilization value of BS in Taiwan.


Subject(s)
Cellulose , Paper , Sodium Hydroxide/chemistry , Cellulose/chemistry , Industry , Agriculture
SELECTION OF CITATIONS
SEARCH DETAIL
...