Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
MedComm (2020) ; 5(5): e533, 2024 May.
Article in English | MEDLINE | ID: mdl-38745853

ABSTRACT

Vascular calcification is a strong predictor of cardiovascular events. Essential metals play critical roles in maintaining human health. However, the association of essential metal levels with risk of aortic arch calcification (AoAC) remains unclear. We measured the plasma concentrations of nine essential metals in a cross-sectional population and evaluated their individual and combined effects on AoAC risk using multiple statistical methods. We also explored the mediating role of fasting glucose. In the logistic regression model, higher quartiles of magnesium and copper were associated with the decreased AoAC risk, while higher quartile of manganese was associated with higher AoAC risk. The least absolute shrinkage and selection operator penalized regression analysis identified magnesium, manganese, calcium, cobalt, and copper as key metals associated with AoAC risk. The weighted quantile sum regression suggested a combined effect of metal mixture. A linear and positive dose-response relationship was found between manganese and AoAC in males. Moreover, blood glucose might mediate a proportion of 9.38% of the association between manganese exposure and AoAC risk. In summary, five essential metal levels were associated with AoAC and showed combined effect. Fasting glucose might play a significant role in mediating manganese exposure-associated AoAC risk.

2.
Ecotoxicol Environ Saf ; 276: 116283, 2024 May.
Article in English | MEDLINE | ID: mdl-38574647

ABSTRACT

Equilibration of metal metabolism is critical for normal liver function. Most epidemiological studies have only concentrated on the influence of limited metals. However, the single and synergistic impact of multiple-metal exposures on abnormal liver function (ALF) are still unknown. A cross-sectional study involving 1493 Chinese adults residing in Shenzhen was conducted. Plasma concentrations of 13 metals, including essential metals (calcium, copper, cobalt, iron, magnesium, manganese, molybdenum, zinc, and selenium) and toxic metals (aluminum, cadmium, arsenic, and thallium) were detected by the inductively coupled plasma spectrometry (ICP-MS). ALF was ascertained as any observed abnormality from albumin, alanine transaminase, aspartate transaminase, γ-glutamyl transpeptidase, and direct bilirubin. Diverse statistical methods were used to evaluate the single and mixture effect of metals, as well as the dose-response relationships with ALF risk, respectively. Mediation analysis was conducted to evaluate the role of blood lipids in the relation of metal exposure with ALF. The average age of subjects was 59.7 years, and 56.7 % were females. Logistic regression and the least absolute shrinkage and selection operator (LASSO) penalized regression model consistently suggested that increased levels of arsenic, aluminum, manganese, and cadmium were related to elevated risk of ALF; while magnesium and zinc showed protective effects on ALF (all p-trend < 0.05). The grouped weighted quantile sum (GWQS) regression revealed that the WQS index of essential metals and toxic metals showed significantly negative or positive relationship with ALF, respectively. Aluminum, arsenic, cadmium, and manganese showed linear whilst magnesium and zinc showed non-linear dose-response relationships with ALF risk. Mediation analysis showed that LDL-c mediated 4.41 % and 14.74 % of the relationship of plasma cadmium and manganese with ALF, respectively. In summary, plasma aluminum, arsenic, manganese, cadmium, magnesium, and zinc related with ALF, and LDL-c might underlie the pathogenesis of ALF associated with cadmium and manganese exposure. This study may provide critical public health significances in liver injury prevention and scientific evidence for the establishment of environmental standard.


Subject(s)
Cholesterol, LDL , Metals , Humans , Female , Middle Aged , Male , Cross-Sectional Studies , China , Metals/blood , Metals/toxicity , Cholesterol, LDL/blood , Liver/drug effects , Aged , Environmental Exposure/statistics & numerical data , Adult , Environmental Pollutants/blood , Mediation Analysis , Arsenic/blood , Arsenic/toxicity , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/etiology
4.
Environ Int ; 183: 108405, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163401

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) can disrupt liver homeostasis. Studies have shown that a single exposure to PFAS may provoke abnormal liver function; however, few studies have investigated the overall effect of PFAS mixtures. We aimed to investigate associations between exposure to PFAS mixtures and liver function indices and explore the relevant mechanisms. This study included 278 adult males from Guangzhou, China. Serum metabolite profiles were analyzed using untargeted metabolomics. We applied weighted quantile sum (WQS) regression as well as Bayesian kernel machine regression (BKMR) to analyze the association of nine PFAS mixtures with 14 liver function indices. PFAS mixtures were positively associated with apolipoprotein B (APOB) and gamma-glutamyltransferase (GGT) and negatively associated with direct bilirubin (DBIL) and total bilirubin (TBIL) in both the WQS and BKMR analyses. In addition, Spearman's correlation test showed individual PFAS correlated with APOB, GGT, TBIL, and DBIL, while there's little correlation between individual PFAS and other liver function indices. In linear regression analysis, PFHxS, PFOS, PFHpS, PFNA, PFDA, and PFUdA were associated with APOB; PFOA, PFDA, PFOS, PFNA, and PFUdA were associated with GGT. Subsequently, a metabolome-wide association study and mediation analysis were combined to explore metabolites that mediate these associations. The mechanisms linking PFAS to APOB and GGT are mainly related with amino acid and glycerophospholipid metabolism. High-dimensional mediation analysis showed that glycerophospholipids are the main markers of the association between PFAS and APOB, and that (R)-dihydromaleimide, Ile Leu, (R)-(+)-2-pyrrolidone-5-carboxylic acid, and L-glutamate are the main markers of the association between PFAS and GGT. In summary, overall associations between PFAS and specific indices of liver function were found using two statistical methods; the metabolic pathways and markers identified here may serve to prompt more detailed study in animal-based systems, as well as a similar detailed analysis in other populations.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Animals , Male , Bayes Theorem , Apolipoproteins B , Bilirubin , Liver
5.
Int J Epidemiol ; 53(1)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37690069

ABSTRACT

BACKGROUND: The effect of exposure to extreme temperature events (ETEs) on dementia mortality remains largely unknown. We aimed to quantify the association of ETE exposure with dementia mortality. METHODS: We conducted a population-based, case-crossover study among 57 791 dementia deaths in Jiangsu province, China, during 2015-20. Daily mean temperatures were extracted from a validated grid dataset at each subject's residential address, and grid-specific exposures to heat wave and cold spell were assessed with a combination of their intensity and duration. We applied conditional logistic regression models to investigate cumulative and lag effects for ETE exposures. RESULTS: Exposure to ETE with each of all 24 definitions was associated with an increased odds of dementia mortality, which was higher when exposed to heat wave. Exposure to heat wave (daily mean temperature ≥95th percentile, duration ≥3 days (d); P95_3d) and cold spell (≤5th percentile, duration ≥3 d; P5_3d) was associated with a 75% (95% CI: 61%, 90%) and 30% (19%, 43%) increase in odds of dementia mortality, respectively. Definitions with higher intensity were generally associated with a higher odds of dementia mortality. We estimated that 6.14% of dementia deaths were attributable to exposure to heat wave (P90_2d) and cold spell (P10_2d). No effect modifications were observed by sex or age, except that the association for heat wave was stronger among women. CONCLUSIONS: Exposure to both heat wave and cold spell was associated with an increased odds of dementia mortality. Our findings highlight that reducing individual ETE exposures may be helpful in preventing deaths from dementia, especially among women in summer.


Subject(s)
Cold Temperature , Dementia , Adult , Humans , Female , Temperature , Cross-Over Studies , China/epidemiology , Mortality
6.
Andrology ; 12(2): 316-326, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37282772

ABSTRACT

BACKGROUND: General obesity classified by body mass index has been linked to a reduction in semen quality; however, evidence on the adverse effect of central obesity on semen quality remains limited. OBJECTIVES: To investigate the association between central obesity and semen quality. MATERIALS AND METHODS: We conducted a cross-sectional study of 4513 sperm donation volunteers in Guangdong Provincial Human Sperm Bank during 2018-2021. Three central obesity indicators, including waist circumference, waist-to-hip ratio, and waist-to-height ratio, were measured using a multi-frequency bioelectrical impedance analysis for each subject. Semen analysis was conducted according to the World Health Organization laboratory manual for the examination and processing of human semen 5th edition. Linear regression models and unconditional logistic regression models were used to quantify the association between central obesity and semen parameters. RESULTS: With adjustment for age, race, education level, marital status, fertility status, occupation, year of semen collection, abstinence period, ambient temperature, and relative humidity, central obesity defined as waist circumference ≥90 cm, waist-to-hip ratio ≥0.9, or waist-to-height ratio ≥0.5 was significantly associated with a 0.27 (95% confidence interval: 0.15, 0.38) mL, 14.47 (3.60, 25.34) × 106 , 7.06 (0.46, 13.76) × 106 , and 6.80 (0.42, 13.18) × 106 reduction in semen volume, total sperm number, total motile sperm number, and total progressive motile sperm number, respectively, and a 53% (10%, 112%) increase in odds of below the World Health Organization 2010 reference value for semen volume. These associations did not significantly vary across age. Similar results were observed for central obesity defined using each of the three indicators, except that subjects with a waist circumference ≥90 cm had a slightly higher total motility (estimated change: 1.30%; 95% confidence interval: 0.27%, 2.34%) and progressive motility (estimated change: 1.27%; 95% confidence interval: 0.23%, 2.31%). DISCUSSION AND CONCLUSION: We found that central obesity was significantly associated with a reduction in semen volume, total sperm number, total motile sperm number, and total progressive motile sperm number. Future studies are warranted to confirm our results in other regions and populations.


Subject(s)
Semen Analysis , Semen , Humans , Male , Cross-Sectional Studies , Obesity, Abdominal , Sperm Count , Obesity , Spermatozoa , Volunteers , China , Sperm Motility
7.
Environ Res ; 244: 117927, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38103778

ABSTRACT

BACKGROUND: Ambient fine particulate matter (PM2.5) exposure has been associated with an increased risk of gastrointestinal cancer mortality, but the attributable constituents remain unclear. OBJECTIVES: To investigate the association of long-term exposure to PM2.5 constituents with total and site-specific gastrointestinal cancer mortality using a difference-in-differences approach in Jiangsu province, China during 2015-2020. METHODS: We split Jiangsu into 53 spatial units and computed their yearly death number of total gastrointestinal, esophagus, stomach, colorectum, liver, and pancreas cancer. Utilizing a high-quality grid dataset on PM2.5 constituents, we estimated 10-year population-weighted exposure to black carbon (BC), organic carbon (OC), sulfate, nitrate, ammonium, and chloride in each spatial unit. The effect of constituents on gastrointestinal cancer mortality was assessed by controlling time trends, spatial differences, gross domestic product (GDP), and seasonal temperatures. RESULTS: Overall, 524,019 gastrointestinal cancer deaths were ascertained in 84.77 million population. Each interquartile range increment of BC (0.46 µg/m3), OC (4.56 µg/m3), and nitrate (1.41 µg/m3) was significantly associated with a 27%, 26%, and 34% increased risk of total gastrointestinal cancer mortality, respectively, and these associations remained significant in PM2.5-adjusted models and constituent-residual models. We also identified robust associations of BC, OC, and nitrate exposures with site-specific gastrointestinal cancer mortality. The mortality risk generally displayed increased trends across the total exposure range and rose steeper at higher levels. We did not identify robust associations for sulfate, ammonium, or chlorine exposure. Higher mortality risk ascribed to constituent exposures was identified in total gastrointestinal and liver cancer among women, stomach cancer among men, and total gastrointestinal and stomach cancer among low-GDP regions. CONCLUSIONS: This study offers consistent evidence that long-term exposure to PM2.5-bound BC, OC, and nitrate is associated with total and site-specific gastrointestinal cancer mortality, indicating that these constituents need to be controlled to mitigate the adverse effect of PM2.5 on gastrointestinal cancer mortality.


Subject(s)
Air Pollutants , Air Pollution , Ammonium Compounds , Stomach Neoplasms , Male , Female , Humans , Particulate Matter/toxicity , Particulate Matter/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Environmental Exposure/adverse effects , Nitrates/toxicity , China/epidemiology , Carbon , Soot , Sulfates , Air Pollution/adverse effects
8.
Environ Sci Technol ; 58(1): 171-181, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38100468

ABSTRACT

A case-crossover study among 511,767 cardiovascular disease (CVD) deaths in Jiangsu province, China, during 2015-2021 was conducted to assess the association of exposure to ambient ozone (O3) and heat wave with CVD mortality and explore their possible interactions. Heat wave was defined as extreme high temperature for at least two consecutive days. Grid-level heat waves were defined by multiple combinations of apparent temperature thresholds and durations. Residential O3 and heat wave exposures were assessed using grid data sets (spatial resolution: 1 km × 1 km for O3; 0.0625° × 0.0625° for heat wave). Conditional logistic regression models were applied for exposure-response analyses and evaluation of additive interactions. Under different heat wave definitions, the odds ratios (ORs) of CVD mortality associated with medium-level and high-level O3 exposures ranged from 1.029 to 1.107 compared with low-level O3, while the ORs for heat wave exposure ranged from 1.14 to 1.65. Significant synergistic effects on CVD mortality were observed for the O3 and heat wave exposures, which were generally greater with higher levels of the O3 exposure, higher temperature thresholds, and longer durations of heat wave exposure. Up to 5.8% of the CVD deaths were attributable to O3 and heat wave. Women and older adults were more vulnerable to the exposure to O3 and heat wave exposure. Exposure to both O3 and heat wave was significantly associated with an increased odds of CVD mortality, and O3 and heat wave can interact synergistically to trigger CVD deaths.


Subject(s)
Air Pollutants , Air Pollution , Cardiovascular Diseases , Ozone , Humans , Female , Aged , Ozone/analysis , Cardiovascular Diseases/epidemiology , Air Pollutants/analysis , Cross-Over Studies , Hot Temperature , China/epidemiology , Air Pollution/analysis , Environmental Exposure/analysis , Particulate Matter/analysis
9.
Int J Biometeorol ; 67(12): 2093-2106, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37878088

ABSTRACT

Hazardous thermal conditions resulting from climate change may play a role in cardiovascular disease development. We chose the Universal Thermal Climate Index (UTCI) as the exposure metric to evaluate the relationship between thermal conditions and cardiovascular mortality in Shenzhen, China. We applied quasi-Poisson regression non-linear distributed lag models to evaluate the exposure-response associations. The findings suggest that cardiovascular mortality risks were significantly increased under heat and cold stress, and the adverse effects of cold stress were stronger than heat stress. Referencing the 50th percentile of UTCI (25.4°C), the cumulative risk of cardiovascular mortality was 75% (RRlag0-21 =1.75, 95%CI: 1.32, 2.32) higher in the 1st percentile (3.5°C), and 40% (RRlag0-21=1.40, 95%CI: 1.09, 1.80) higher in the 99th percentile (34.1°C). We observed that individuals older than 65 years were more vulnerable to both cold and heat stress, and females were identified as more susceptible to heat stress than males. Moreover, increased mortality risks of hypertensive disease and cerebrovascular disease were observed under cold stress, while heat stress was related to higher risks of mortality for hypertensive disease and ischemic heart disease. We also observed a stronger relationship between cold stress and ischemic heart disease mortality during the cold season, as well as a significant impact of heat stress on cerebrovascular disease mortality in the warm season when compared to the analysis of the entire year. These results confirm the significant relationship between thermal stress and cardiovascular mortality, with age and sex as potential effect modifiers of this association. Providing affordable air conditioning equipment, increasing the amount of vegetation, and establishing comprehensive early warning systems that take human thermoregulation into account could all help to safeguard the well-being of the public, particularly vulnerable populations, in the event of future extreme weather.


Subject(s)
Cardiovascular Diseases , Cerebrovascular Disorders , Heat Stress Disorders , Hypertension , Myocardial Ischemia , Male , Female , Humans , Hot Temperature , Cold Temperature , Mortality
10.
Chemosphere ; 340: 139800, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37572709

ABSTRACT

The association of ambient fine particulate matter (PM2.5) exposure with cancer mortality was controversial, which may ascribe to the difference in PM2.5 constituents. Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic constituents in PM2.5, which are suspected to account for PM2.5-induced cancer mortality but are yet to be investigated. We aimed to assess the association between long-term exposure to PM2.5-bound PAHs and cancer mortality and estimate the attributable mortality. A difference-in-differences approach was used to investigate the causal effect of long-term exposure to PM2.5-bound PAHs on cancer mortality. We divided Jiangsu province, China into 53 spatial units and summarized the annual number of cancer deaths in each spatial unit during 2016-2020. Annual population-weighted exposure to PM2.5-bound PAHs of each spatial unit was assessed by an inverse distance weighting method. The association between PM2.5-bound PAHs exposures and cancer mortality was evaluated by controlling spatial differences, temporal trends, PM2.5 mass exposures, temperatures, and socioeconomic status. Records of 793,269 cancer deaths were identified among 84.7 million population. Each ln-unit increase of exposure to total benzo[a]pyrene equivalents (∑BaPeq), total carcinogenic PAHs (∑PAH7c), and total PAHs (∑PAHs) was significantly associated with a 3.21%, 3.48%, and 2.64% increased risk of cancer mortality, respectively; the risk increased monotonically at low-level exposures but attenuated or flattened afterward (all p for nonlinearity <0.05). Similar exposure-response associations were identified for specific PAHs except that the associations for both fluoranthene and benzo[a]anthracene were linear. We estimated that exposure to ∑BaPeq, ∑PAH7c, and ∑PAHs contributed to 5.73%, 8.73%, and 7.33% of cancer deaths, respectively. In conclusion, long-term exposure to PM2.5-bound PAHs was associated with an increased risk of cancer mortality and contributed to substantial cancer deaths. Our findings highlight the importance to prevent deaths from cancer by reducing PM2.5-bound PAHs exposures and the necessity to take into consideration specific constituents in particulate pollution management in future.


Subject(s)
Air Pollutants , Neoplasms , Polycyclic Aromatic Hydrocarbons , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Dust , Environmental Monitoring , Neoplasms/chemically induced , Neoplasms/epidemiology
11.
Circulation ; 148(4): 312-323, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37486993

ABSTRACT

BACKGROUND: Extreme temperature events (ETEs), including heat wave and cold spell, have been linked to myocardial infarction (MI) morbidity; however, their effects on MI mortality are less clear. Although ambient fine particulate matter (PM2.5) is suggested to act synergistically with extreme temperatures on cardiovascular mortality, it remains unknown if and how ETEs and PM2.5 interact to trigger MI deaths. METHODS: A time-stratified case-crossover study of 202 678 MI deaths in Jiangsu province, China, from 2015 to 2020, was conducted to investigate the association of exposure to ETEs and PM2.5 with MI mortality and evaluate their interactive effects. On the basis of ambient apparent temperature, multiple temperature thresholds and durations were used to build 12 ETE definitions. Daily ETEs and PM2.5 exposures were assessed by extracting values from validated grid datasets at each subject's geocoded residential address. Conditional logistic regression models were applied to perform exposure-response analyses and estimate relative excess odds due to interaction, proportion attributable to interaction, and synergy index. RESULTS: Under different ETE definitions, the odds ratio of MI mortality associated with heat wave and cold spell ranged from 1.18 (95% CI, 1.14-1.21) to 1.74 (1.66-1.83), and 1.04 (1.02-1.06) to 1.12 (1.07-1.18), respectively. Lag 01-day exposure to PM2.5 was significantly associated with an increased odds of MI mortality, which attenuated at higher exposures. We observed a significant synergistic interaction of heat wave and PM2.5 on MI mortality (relative excess odds due to interaction >0, proportion attributable to interaction >0, and synergy index >1), which was higher, in general, for heat wave with greater intensities and longer durations. We estimated that up to 2.8% of the MI deaths were attributable to exposure to ETEs and PM2.5 at levels exceeding the interim target 3 value (37.5 µg/m3) of World Health Organization air quality guidelines. Women and older adults were more vulnerable to ETEs and PM2.5. The interactive effects of ETEs or PM2.5 on MI mortality did not vary across sex, age, or socioeconomic status. CONCLUSIONS: This study provides consistent evidence that exposure to both ETEs and PM2.5 is significantly associated with an increased odds of MI mortality, especially for women and older adults, and that heat wave interacts synergistically with PM2.5 to trigger MI deaths but cold spell does not. Our findings suggest that mitigating both ETE and PM2.5 exposures may bring health cobenefits in preventing premature deaths from MI.


Subject(s)
Air Pollutants , Air Pollution , Myocardial Infarction , Humans , Female , Aged , Particulate Matter/adverse effects , Particulate Matter/analysis , Temperature , Air Pollutants/adverse effects , Air Pollutants/analysis , Cross-Over Studies , Air Pollution/adverse effects , Air Pollution/analysis , China/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Mortality
12.
Environ Res ; 236(Pt 2): 116665, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37451571

ABSTRACT

BACKGROUND: Previous studies have suggested an association between non-optimum ambient temperature and decreased semen quality. However, the effect of exposure to heat waves on semen quality remains unclear. METHODS: Volunteers who intended to donate sperm in Guangdong provincial human sperm bank enrolled. Heat waves were defined by temperature threshold and duration, with a total of 9 definitions were employed, specifying daily mean temperature exceeding the 85th, 90th, or 95th percentile for at least 2, 3, or 4 consecutive days. Residential exposure to heat waves during 0-90 days before ejaculation was evaluated using a validated gridded dataset on ambient temperature. Association and potential windows of susceptibility were evaluated and identified using linear mixed models and distributed lag non-linear models. RESULTS: A total of 2183 sperm donation volunteers underwent 8632 semen analyses from 2018 to 2019. Exposure to heat wave defined as daily mean temperature exceeding the 95th percentile for at least 4 consecutive days (P95-D4) was significantly associated with a 0.11 (95% confidence interval [CI]: 0.03, 0.18) ml, 3.36 (1.35, 5.38) × 106/ml, 16.93 (7.95, 25.91) × 106, and 2.11% (1.4%, 2.83%) reduction in semen volume, sperm concentration, total sperm number, and normal forms, respectively; whereas exposure to heat wave defined as P90-D4 was significantly associated with a 1.98% (1.47%, 2.48%) and 2.08% (1.57%, 2.58%) reduction in total motility and progressive motility, respectively. Sperm count and morphology were susceptible to heat wave exposure during the early stage of spermatogenesis, while sperm motility was susceptible to exposure during the late stage. CONCLUSION: Heat wave exposure was significantly associated with a reduction in semen quality. The windows of susceptibility during 0-90 days before ejaculation varied across sperm count, motility, and morphology. Our findings suggest that reducing heat wave exposure before ejaculation may benefit sperm donation volunteers and those attempting to conceive.

13.
Environ Pollut ; 334: 122133, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37399936

ABSTRACT

The COVID-19 pandemic has severely affected healthcare worldwide and has led to the excessive use of disinfectants and antimicrobial agents. However, the impact of excessive disinfection measures and specific medication prescriptions on the development and dissemination of bacterial drug resistance during the pandemic remains unclear. This study investigated the influence of the pandemic on the composition of antibiotics, antibiotic resistance genes (ARGs), and pathogenic communities in hospital wastewater using ultra-performance liquid chromatography-tandem mass spectrometry and metagenome sequencing. The overall level of antibiotics decreased after the COVID-19 outbreak, whereas the abundance of various ARGs increased in hospital wastewater. After COVID-19 outbreak, blaOXA, sul2, tetX, and qnrS had higher concentrations in winter than in summer. Seasonal factors and the COVID-19 pandemic have affected the microbial structure in wastewater, especially of Klebsiella, Escherichia, Aeromonas, and Acinetobacter. Further analysis revealed the co-existence of qnrS, blaNDM, and blaKPC during the pandemic. Various ARGs significantly correlated with mobile genetic elements, implying their potential mobility. A network analysis revealed that many pathogenic bacteria (Klebsiella, Escherichia, and Vibrio) were correlated with ARGs, indicating the existence of multi-drug resistant pathogens. Although the calculated resistome risk score did not change significantly, our results suggest that the COVID-19 pandemic shifted the composition of residual antibiotics and ARGs in hospital wastewater and contributed to the dissemination of bacterial drug resistance.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Humans , Anti-Bacterial Agents/pharmacology , Wastewater , Pandemics , Genes, Bacterial , COVID-19/epidemiology , Bacteria/genetics , Drug Resistance, Bacterial/genetics , Hospitals
15.
Sci Total Environ ; 870: 161892, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36731563

ABSTRACT

BACKGROUND: Accumulating evidence has linked exposure to ambient air pollution to a reduction in semen quality; however, the exposure-response associations are yet to be synthesized. OBJECTIVE: To summarize the exposure-response associations between air pollution and semen quality. METHODS: We systematically searched PubMed, Embase, and Web of Science for relevant studies published before April 20, 2022. Studies investigating the exposure-response association of PM2.5, PM10, SO2, NO2, CO, and O3 with semen quality written in English were included. Semen quality parameters included semen volume, sperm concentration, total sperm number, total motility, progressive motility, and normal forms. Random-effects and fixed-effects models were performed to synthesize associations in the meta-analysis. RESULTS: The search returned 850 studies, 11 of which were eligible for meta-analysis. Each 10 µg/m3 increase of exposure to PM10 and SO2 was respectively associated with a 2.18 % (95 % confidence interval [CI]: 0.10 %-4.21 %) and 8.61 % (1.00 %-15.63 %) reduction in sperm concentration, and a 2.76 % (0.10 %-5.35 %) and 9.52 % (5.82 %-13.93 %) reduction in total sperm number. Each 10 µg/m3 increase of exposure to PM2.5 and PM10 was respectively associated with a 1.06 % (95 % CI: 0.31 %-1.82 %) and 0.75 % (0.43 %-1.08 %) reduction in total motility, and a 0.55 % (0.09 %-1.01 %) and 0.31 % (0.06 %-0.56 %) reduction in progressive motility. No association was observed for PM2.5 or PM10 with semen volume; PM2.5, NO2, CO, or O3 with sperm concentration or total sperm number; and gaseous air pollutants with total or progressive motility. The association between air pollution and normal forms was not summarized due to insufficient number of studies. No significant publication bias was detected. CONCLUSIONS: Exposure to ambient PM2.5, PM10, and SO2 was inversely associated with sperm concentration, total sperm number, total motility, and/or progressive motility. Our findings add to the evidence that air pollution may lead to adverse effects on male reproductive system and suggest that reducing exposure to air pollution may help maintain better semen quality.


Subject(s)
Air Pollutants , Air Pollution , Male , Humans , Semen Analysis , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Semen , Air Pollution/analysis , Air Pollutants/analysis , Environmental Exposure/analysis
16.
Environ Res ; 222: 115405, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36736553

ABSTRACT

BACKGROUND: Accumulating studies have reported that chronic exposure to ambient fine particulate matter (PM2.5) can lead to adverse effects on lung cancer mortality; however, such chronic effects are less clear for mortality from other site-specific cancers. OBJECTIVE: To explore the causal effect of long-term PM2.5 exposure on mortality from all-site and a variety of site-specific cancers in Jiangsu province, China during 2015-2020 using a difference-in-differences analysis. METHODS: For each of 53 county-based spatial units in Jiangsu province, we calculated annual death counts for all-site cancer and 23 site-specific cancers. Using a validated high-resolution PM2.5 grid dataset, long-term PM2.5 exposure of a spatial unit within a given year was evaluated as the average of population-weighted annual concentrations during recent 10 years. Conditional Poisson regression models were employed to evaluate exposure-response associations adjusting for spatial and temporal variables, seasonal temperatures, relative humidity, and gross domestic product (GDP). RESULTS: During the study period, we identified 947,337 adult cancer deaths in Jiangsu province. Each 1 µg/m3 increment in PM2.5 exposure was significantly associated with a 2.7% increase in the risk of all-site cancer mortality. PM2.5-mortality associations were also observed in cancer of lip, oral cavity and pharynx, stomach, colorectum, pancreas, lung, bone and joints, ovary, prostate, and lymphoma (all adjusted P < 0.05), with the relative risks ranging from 1.028 (95% confidence interval [CI]: 1.011, 1.046) for stomach cancer to 1.201 (95% CI: 1.120, 1.308) for bone and joints cancers. Exposure-response curves showed that these associations were close to linearity, though most of them had increasing slopes at high exposure levels. Overall, women and subjects in low GDP regions were more vulnerable to PM2.5 exposures. CONCLUSIONS: Long-term exposure to ambient PM2.5 contributes to a higher risk of mortality from multiple site-specific cancers.


Subject(s)
Air Pollutants , Air Pollution , Lung Neoplasms , Male , Adult , Humans , Female , Particulate Matter/analysis , Air Pollutants/toxicity , China , Risk , Lung Neoplasms/chemically induced , Environmental Exposure/analysis , Air Pollution/analysis
17.
Environ Int ; 173: 107809, 2023 03.
Article in English | MEDLINE | ID: mdl-36805156

ABSTRACT

BACKGROUND: Potential adverse effects of non-optimum temperatures on human semen quality have drawn much concern worldwide; however, the exposure-response relationship remains less understood. OBJECTIVES: To quantitatively assess the association between exposure to ambient temperature and semen quality in South China, and to identify potential critical exposure windows. METHODS: We conducted a longitudinal study to investigate 11,050 volunteers who lived in Guangdong province, China and intended to donate sperm in the Guangdong provincial human sperm bank during 2016-2021. Exposure to ambient temperature during 0-90 days before semen collection was assessed by extracting daily temperatures from a validated grid dataset at each subject's residential address. Linear mixed models and linear regression models were used to perform exposure-response analyses. RESULTS: During the study period, the 11,050 subjects underwent 44,564 semen analyses. Each 5 °C increase of lag 0-90 day exposure to ambient temperature was approximately linearly associated with a 3.11 (95 % confidence interval [CI]: 2.08, 4.14) × 106/ml, 9.31 (4.83, 13.80) × 106, 1.27 % (0.91 %, 1.62 %), 8.20 (5.33, 11.08) × 106, 1.37 % (1.01 %, 1.74 %), 8.29 (5.52, 11.06) × 106, 0.67 % (0.28 %, 1.05 %), and 4.50 (2.20, 6.80) × 106 reduction in sperm concentration, total sperm number, total motility, total motile sperm number, progressive motility, total progressive sperm number, normal forms, and total normal form sperm number, respectively (all p < 0.001), which was not significantly modified by age (all p for effect modification > 0.05). We identified a critical exposure period of 10-14 days before semen collection for sperm motility, and 70-90 days before semen collection for sperm count and morphology. CONCLUSIONS: Our study provides consistent evidence that higher ambient temperature was significantly associated with a reduction in semen quality in South China. The findings highlight the needs to reduce high temperature exposures during 3 months before ejaculation to maintain better semen quality.


Subject(s)
Semen Analysis , Semen , Humans , Male , Temperature , Longitudinal Studies , Sperm Motility , Sperm Count , Spermatozoa , China
18.
Environ Sci Pollut Res Int ; 30(15): 44943-44951, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36697981

ABSTRACT

The occurrence of antibiotics in the feces of elderly individuals in Shenzhen, China, was investigated by monitoring 78 compounds to understand the adverse effects and its association with antibiotic residues in animal products collected from local markets. In total, 18 compounds belonging to 5 classes of antibiotics were identified in 74 of 140 fecal samples. Furthermore, 17.9% of the fecal samples contained at least two antibiotics, and 14.3% of the samples showed antibiotic concentrations higher than 100 µg/kg. Cephalothin exhibited the highest detection frequency (22.1%), followed by azithromycin (15.7%) and tilmicosin (12.9%). Oxytetracycline, norfloxacin, and azithromycin showed extremely high concentrations (> 1000 µg/kg). Eight antibiotics were detected in the animal products, with detection frequencies ranging from 4.8 to 40.0%. Five antibiotics exhibited similar detection frequencies and strong correlations between the human fecal and animal product samples. Health risk assessment based on hazard quotients showed that ciprofloxacin in animal products and human feces posed a medium and high risk, respectively. The hazard quotients of oxytetracycline, norfloxacin, and azithromycin in the feces were greater than 1, indicating a high health risk. These findings suggest that the elderly individuals were frequently exposed to antibiotics via the food chain and faced health risks posed by these antibiotics.


Subject(s)
Oxytetracycline , Water Pollutants, Chemical , Animals , Humans , Aged , Anti-Bacterial Agents/analysis , Norfloxacin , Azithromycin , China , Risk Assessment , Water Pollutants, Chemical/analysis , Feces/chemistry , Environmental Monitoring
19.
Chemosphere ; 311(Pt 1): 137066, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36328321

ABSTRACT

Bisphenol F (BPF) is a widely used bisphenol A (BPA) substitute plastic additive that has attracted increasing public concerns due to its potential toxic effects on animal and human health. Although previous studies have indicated that BPF might have harmful effects on metabolic homeostasis, the systematic effects of BPF on glucose disorders remain controversial. In this study, mice fed a normal chow diet (ND) and high-fat diet (HFD) were administered BPF at a dose of 100 µg/kg of body weight, and glucose metabolism was monitored after both short- and long-term treatment. Little change in glucose metabolism was observed in BPF-treated ND mice, but improved glucose metabolism was observed in BPF-treated HFD mice. Consistently, BPF treatment led to increased insulin signalling in the skeletal muscle of HFD mice. Additionally, liver metabolite levels also revealed increased carbohydrate digestion and improved TCA cycle progression in BPF-treated HFD mice. Our results demonstrate that sustained BPF exposure at an environmentally relevant dosage may substantially improve glucose metabolism and enhance insulin sensitivity in mice fed a high-fat diet.


Subject(s)
Diet, High-Fat , Hypoglycemic Agents , Humans , Mice , Animals , Benzhydryl Compounds/pharmacology , Insulin/metabolism , Glucose/metabolism
20.
Environ Sci Pollut Res Int ; 30(1): 1774-1784, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35921008

ABSTRACT

Cold spells have been associated with specific diseases. However, there is insufficient scientific evidence on the effects of cold spells on out-of-hospital cardiac arrest (OHCA). Data on OHCA cases and on meteorological factors and air pollutants were collected between 2013 and 2020. We adopted a quasi-Poisson generalized additive model with a distributed lag nonlinear model (DLNM) to estimate the effect of cold spells on daily OHCA incidence. Backward attributable risk within the DLNM framework was calculated to quantify the disease burden. We compared the effects and OHCA burden of cold spells using nine definitions. The risks of different cold spells on OHCA increased at higher intensities and longer durations. Based on Akaike's information criterion for the quasi-Poisson regression model and the attributable risk, the optimal cold spell was defined as a period in the cold month when the daily mean temperature was below the 10th percentile of the temperature distribution in the study period for at least 2 days. The single-day effect of the optimal cold spell on OHCA occurred immediately and lasted for approximately 1 week. The maximum single-day effect was 1.052 (95% CI: 1.018-1.087) at lag0, while the maximum cumulative effect was 1.433 (95% CI:1.148-1.788) after a 14-day lag. Men were more susceptible to cold spells. Young and middle-aged people were affected by cold spells similar to the elderly. Cold spells can increase the risk of OHCA with an approximately 1-week lag effect. Health regulators should take more targeted measures to protect susceptible populations during cold weather.


Subject(s)
Out-of-Hospital Cardiac Arrest , Aged , Middle Aged , Male , Humans , Out-of-Hospital Cardiac Arrest/epidemiology , Cold Temperature , Temperature , China/epidemiology , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...