Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Front Genet ; 12: 687979, 2021.
Article in English | MEDLINE | ID: mdl-34367245

ABSTRACT

Skin cutaneous melanoma (SKCM) is a highly aggressive tumor. The mortality and drug resistance among it are high. Thus, exploring predictive biomarkers for prognosis has become a priority. We aimed to find immune cell-based biomarkers for survival prediction. Here 321 genes were differentially expressed in immune-related groups after ESTIMATE analysis and differential analysis. Two hundred nineteen of them were associated with the metastasis of SKCM via weighted gene co-expression network analysis. Twenty-six genes in this module were hub genes. Twelve of the 26 genes were related to overall survival in SKCM patients. After a multivariable Cox regression analysis, we obtained six of these genes (PLA2G2D, IKZF3, MS4A1, ZC3H12D, FCRL3, and P2RY10) that were independent prognostic signatures, and a survival model of them performed excellent predictive efficacy. The results revealed several essential genes that may act as significant prognostic factors of SKCM, which could deepen our understanding of the metastatic mechanisms and improve cancer treatment.

3.
Front Mol Biosci ; 8: 687760, 2021.
Article in English | MEDLINE | ID: mdl-34026852

ABSTRACT

Background: The incidence of skin cutaneous melanoma (SKCM) has risen more rapidly than any other solid tumor in the past few decades. The median survival for metastatic melanoma is only six to nine months and the 5°years survival rate of patients with conventional therapy is less than 5%. Our aim was to reveal the potential molecular mechanism in m6A modification of lncRNA and provide candidate prognostic biomarkers for metastatic SKCM. Methods: lncRNAs expression level was obtained by re-annotation in TCGA and CCLE datasets. m6A-related lncRNAs were selected though correlation analysis. Univariate cox regression analysis was used to screen out independent prognostic factors. LASSO Cox regression was performed to construct an m6A-related lncRNA model (m6A-LncM). Univariate survival analysis and ROC curve were used to assess the prognostic efficacy of this model and candidate lncRNAs. Enrichment analysis was used to explore the candidate genes' functions. Results: We obtained 1,086 common m6A-related lncRNAs after Pearson correlation analysis in both two datasets. 130 out of the 1,086 lncRNAs are independent prognostic factors. 24 crucial lncRNAs were filtered after LASSO Cox regression analysis. All the m6A-LncM and the 24 lncRNAs were related to overall survival. Stratified survival analysis of m6A-LncM showed that the model retains its prognostic efficacy in recurrence, radiation therapy and other subgroups. Enrichment analysis also found that these lncRNAs were immune associated. Conclusion: Here, we obtained 24 crucial lncRNAs that may be potential biomarkers to predict survival of metastatic SKCM and may provide a new insight to improve the prognosis of it.

4.
J Investig Med ; 68(8): 1357-1363, 2020 12.
Article in English | MEDLINE | ID: mdl-32753405

ABSTRACT

Accumulating studies have shown that the dysregulation of microRNAs is related to the carcinogenesis and development of gastric cancer (GC), and the role of miR-635 in GC remains largely unknown. miR-635 and Kinesin Family Member C1 (KIFC1) mRNA expression in GC tissues and paracancerous tissues and cells were detected by quantitative real-time PCR. KIFC1 protein expression in GC tissues and paracancerous normal tissues and cells was detected by immunohistochemistry and western blot. Cell proliferation was monitored by Cell Counting Kit-8 assay and 5-bromo-2'-deoxyuridine assay. Transwell assay was employed to detect the migration and invasion of GC cells. The dual-luciferase reporter gene assay was adopted to detect the targeting relationship between miR-635 and KIFC1. Compared with paracancerous tissues, miR-635 expression was remarkably decreased in GC tissues; conversely, KIFC1 expression was significantly increased. Compared with human normal gastric epithelial cell GSE-1, miR-635 expression was markedly decreased in GC cell lines. Meanwhile, KIFC1 expression was significantly increased, and the Kaplan-Meier Plotter database showed that its high expression was remarkably associated with poor prognosis. Additionally, miR-635 can negatively regulate KIFC1. miR-635 can target KIFC1 to inhibit proliferation, migration and invasion of GC cells. Collectively, miR-635 is lowly expressed in GC, and it inhibits proliferation, migration and invasion of GC cells via regulating KIFC1.


Subject(s)
Disease Progression , Kinesins/metabolism , MicroRNAs/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Base Sequence , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Kinesins/genetics , MicroRNAs/genetics , Neoplasm Invasiveness , Prognosis
5.
APMIS ; 125(7): 634-640, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28444776

ABSTRACT

The antifungal effects of ambroxol (Amb; the metabolite VIII of bromhexine) against Cryptococcus planktonic cells and mature biofilms were investigated in this study. Amb showed antifungal activity against planktonic cells and mature biofilms. Disk diffusion test similarly showed antifungal profile for planktonic cells. Furthermore, Amb was found to be synergetic with fluconazole against planktonic cells and reduced the adherence of cells to polystyrene. Our results suggest that Amb can inhibit cryptococcal cells and biofilms, indicating its potential role in the prevention and treatment of cryptococcosis.


Subject(s)
Ambroxol/pharmacology , Antifungal Agents/pharmacology , Biofilms/drug effects , Cell Adhesion/drug effects , Cryptococcus/drug effects , Adult , Aged , Cryptococcosis/microbiology , Cryptococcus/isolation & purification , Cryptococcus/physiology , Drug Synergism , Female , Fluconazole/pharmacology , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Young Adult
6.
APMIS ; 125(3): 236-248, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28233445

ABSTRACT

Cryptococcus neoformans is an environmental pathogen requiring atmospheric levels of oxygen for optimal growth. Upon inhalation, C. neoformans disseminates to the brain and causes meningoencephalitis. However, the mechanisms by which the pathogen adapts to the low-oxygen environment in the brain have not been investigated. We isolated a C. neoformans strain with a small capsule from a host tissue, although this strain produces large capsules in normoxic conditions. We hypothesize that this difference in capsule size is attributed to hypoxia caused by chronic inflammatory response. This study investigated the effect of hypoxia on virulence factors (including capsule, melanin, urease, and phospholipase) of C. neoformans and conducted transcriptomic analyses of the virulence-associated genes. We found that C. neoformans grew under hypoxic condition, albeit slowly, and that hypoxia may have inhibited the capsule size, melanin production, and phospholipase and urease activities in C. neoformans.


Subject(s)
Cryptococcus neoformans/pathogenicity , Virulence Factors/genetics , Adaptation, Biological/physiology , Cryptococcus neoformans/genetics , Cryptococcus neoformans/growth & development , Hypoxia/metabolism , Transcription, Genetic , Virulence Factors/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...