Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 926: 171872, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38521253

ABSTRACT

Heterojunctions composed of cobalt-based materials and carbon materials have been recognized as the efficient catalysts for peroxymonosulfate (PMS) activation to generate reactive oxygen species for the removal of environmental contaminants. However, the role of carbon materials in promoting the heterojunction systems has not been fully understood. This study synthesized a heterojunction material of graphene sheets encapsulating Co3O4 (GCO-500) through the pyrolysis of cobalt MOF and applied it to activate PMS for the removal of lomefloxacin. The results showed a high removal rate of 93.59 % with a degradation rate of k1 = 0.0156 min-1. Co3O4 clusters was encapsulated within ultrathin graphene sheets (<2 nm). DFT calculations revealed that graphene layers improve the electron transfer ability of Co3O4 and increased the d-band center of Co3O4 (-1.61 eV) that promote the adsorption of PMS on GCO-500 (-1.32 eV). In the meanwhile, organic pollutant was enriched in graphene layers with high adsorption energy (-13.08 eV), which greatly enhanced the degradation efficiency of pharmaceuticals. This study provides an effective catalyst for PMS activation and sheds light on the fundamental electronic-level understanding of cobalt-based and carbon heterojunction catalysts in PMS activation.

2.
Environ Pollut ; 332: 121987, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37301451

ABSTRACT

Current density was the key factor that impacted pollutant degradation by electrochemical oxidation, and reaction contributions at various current densities were non-negligible for the cost-effective treatments of organic pollutants. This research introduced compound specific isotope analysis (CSIA) into atrazine (ATZ) degradation by boron doped diamond (BDD) with current density of 2.5-20 mA/cm2, in order to provide "in-situ" and "fingerprint" analysis of reaction contributions with changed current densities. As results, the increased current density displayed a positive impact on ATZ removal. The ɅC/H values (correlations of Δδ13C and Δδ2H) were 24.58, 9.18 and 8.74 when current densities were 20, 4, and 2.5 mA/cm2, with ·OH contribution of 93.5%, 77.2% and 80.35%, respectively. While DET process favored lower current density with contribution rates up to ∼20%. What's more interesting, though the carbon and hydrogen isotope enrichment factors (εC and εH) were fluctuate, the ɅC/H linearly increased accompanied with applied current densities. Therefore, increasing current density was effective due to the larger ·OH contribution even though side reactions may occur. DFT calculations proved the increase of C-Cl bond length and the delocalization of Cl atom, confirming dechlorination reaction mainly occurred in the direct electron transfer process. While ·OH radical mainly attack the C-N bond on the side chain, which was more benefit to the fast decomposition of ATZ molecule and intermediates. It was forceful to discuss pollutant degradation mechanism by combining CSIA and DFT calculations. Target bond cleavage (i.e., dehalogenation reaction) can be conducted by changing reaction conditions like current density due to the significantly different isotope fractionation and bond cleavage.


Subject(s)
Atrazine , Environmental Pollutants , Water Pollutants, Chemical , Atrazine/analysis , Density Functional Theory , Isotopes , Carbon , Oxidation-Reduction , Environmental Pollutants/analysis , Water Pollutants, Chemical/analysis , Electrodes
3.
Environ Sci Technol ; 56(8): 5200-5212, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35394751

ABSTRACT

Material-enhanced heterogonous peroxymonosulfate (PMS) activation on emerging organic pollutant degradation has attracted intensive attention, and a challenge is the electron transfer efficiency from material to PMS for radical production. Herein, an interface architecture of Co(OH)2 nanosheets growing on the KNbO3 perovskite [Co(OH)2/KNbO3] was developed, which showed high catalytic activity in PMS activation. A high reaction rate constant (k1) of 0.631 min-1 and complete removal of pazufloxacin within 5 min were achieved. X-ray photoelectron spectroscopy, X-ray absorption near edge structure spectra, and density functional theory (DFT) calculations revealed the successful construction of the material interface and modulated electronic structure for Co(OH)2/KNbO3, resulting in the hole accumulation on Co(OH)2 and electron accumulation on KNbO3. Bader topological analysis on charge density distribution further indicates that the occupations of Co-3d and O-2p orbitals in Co(OH)2/KNbO3 are pushed above the Fermi level to form antibonding states (σ*), leading to high chemisorption affinity to PMS. In addition, more reactive Co(II) with the closer d-band center to the Fermi level results in higher electron transfer efficiency and lower decomposition energy of PMS to SO4•-. Moreover, the reactive sites of pazufloxacin for SO4•- attack were precisely identified based on DFT calculation on the Fukui index. The pazufloxacin pathways proceeded as decarboxylation, nitroheterocyclic ring opening reaction, defluorination, and hydroxylation. This work can provide a potential route in developing advanced catalysts based on manipulation of the interface and electronic structure for enhanced Fenton-like reaction such as PMS activation.


Subject(s)
Calcium Compounds , Peroxides , Electronics , Oxides , Peroxides/chemistry , Titanium
4.
Chemosphere ; 273: 129754, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33524760

ABSTRACT

Direct charge transfer (DCT) and •OH attack played important roles in contaminant degradation by BDD electrochemical oxidation. Their separate contributions and potential bond-cleavage processes were required but lacking. Here, we carried out promising compound-specific isotope fractionation analysis (CSIA) to explore 13C and 2H isotope fractionation of atrazine (ATZ), followed by assessing the reaction pathway by BDD anode. The correlation of 2H and 13C fractionation allows to remarkably differentiate DCT process and •OH attack, with Λ values of 18.99 and 53.60, respectively. Radical quenching identified that •OH accounted for 79.0%-88.5% in the whole reaction. While CSIA methods provided biased results, which suggested that ATZ degradation exhibited two stages with •OH contributions of 24.6% and 84.3% respectively, confirming CSIA was more sensitive and provided more possibilities to estimate degradation processes. Combined with Fukui index and intermediate products identification, we deduced that dechlorination-hydroxylation mainly occurred in the first 30 min by DCT reaction. While lateral chain oxidation with C-N broken was the governing route once •OH was largely generated, with the production of DEA (m/z 188), DIA (m/z 174), DEIA (m/z 146) and DEIHA (m/z 128). Our results demonstrated that isotope fractionation can offer "isotopic footprints" for identifying the rate-limiting steps and bond breakage process, and opens new avenues for degradation pathways of contaminants.


Subject(s)
Atrazine , Water Pollutants, Chemical , Chemical Fractionation , Electrodes , Isotopes , Oxidation-Reduction , Water Pollutants, Chemical/analysis
5.
J Hazard Mater ; 402: 123779, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33254790

ABSTRACT

Developing efficient pharmaceuticals and personal care products (PPCPs) degradation technologies is of scientifical and practical importance to restrain their discharge into natural water environment. This study fabricated and applied a composite material of amorphous MnO2 nanoparticles in-situ anchored titanate nanotubes (AMnTi) to activate peroxymonosulfate (PMS) for efficient degradation and mineralization of carbamazepine (CBZ). The degradation pathway and toxicity evolution of CBZ during elimination were deeply evaluated through produced intermediates identification and theoretical calculations. AMnTi with a composition of (0.3MnO2)•(Na1.22H0.78Ti3O7) offered high activation efficiency of PMS, which exhibited 21- and 3-times degradation rate of CBZ compared with the pristine TNTs and MnO2, respectively. The high catalytic activity can be attributed to its unique structure, leading to a lattice shrinkage and small pores to confine the PMS molecule onto the interface. Therefore, efficient charge transfer and catalytic activation through MnOTi linkage occurred, and a MnTi cycle mediating catalytic PMS activation was found. Both hydroxyl and sulfate radicals played key roles in CBZ degradation. Theoretical calculations, i.e., density functional theory (DFT) and computational toxicity calculations, combined with intermediates identification revealed that CBZ degradation pathway was hydroxyl addition and NC cleavage. CBZ degradation in this system was also a toxicity-attenuation process.

6.
Water Res ; 185: 116286, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32818732

ABSTRACT

Chemical speciation of ionizable antibiotics greatly affects its photochemical kinetics and mechanisms; however, the mechanistic impact of chemical speciation is not well understood. For the first time, the impact of different dissociation species (cationic, zwitterionic and anionic forms) of ciprofloxacin (CIP) on its photocatalytic transformation fate was systematically studied in a UVA/LED/TiO2 system. The dissociation forms of CIP at different pH affected the photocatalytic degradation kinetics, transformation products (TPs) formation as well as degradation pathways. Zwitterionic form of CIP exhibited the highest degradation rate constant (0.2217 ± 0.0179 min-1), removal efficiency of total organic carbon (TOC) and release of fluoride ion (F-). Time-dependent evolution profiles on TPs revealed that the cationic and anionic forms of CIP mainly underwent piperazine ring dealkylation, while zwitterionic CIP primarily proceeded through defluorination and piperazine ring oxidation. Moreover, density functional theory (DFT) calculation based on Fukui index well interpreted the active sites of different CIP species. Potential energy surface (PES) analysis further elucidated the reaction transition state (TS) evolution and energy barrier (ΔEb) for CIP with different dissociation species after radical attack. This study provides deep insights into degradation mechanisms of emerging organic contaminants in advanced oxidation processes associated to their chemical speciation.


Subject(s)
Ciprofloxacin , Water Pollutants, Chemical , Anti-Bacterial Agents/toxicity , Ciprofloxacin/analysis , Ciprofloxacin/toxicity , Kinetics , Oxidation-Reduction , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
7.
J Hazard Mater ; 400: 123225, 2020 12 05.
Article in English | MEDLINE | ID: mdl-32585518

ABSTRACT

Pharmaceuticals and personal care products (PPCPs) have been widely detected in ecosystems. However, effective water purification technologies for PPCPs degradation are lacking. In this work, an active activated carbon fiber supported titanate nanotubes (TNTs@ACF) composite was synthesized via one-step hydrothermal process, which was applied for adsorption and photocatalytic degradation of PPCPs under simulated solar light. Characterizations indicated that the successful grafting of TNTs onto ACF was achieved and surface modification occurred. Diclofenac (DCF, a model PPCPs) was rapidly adsorbed onto TNTs@ACF, and subsequently photodegraded (98.8 %) under solar light within 2 h. TNTs@ACF also performed well over a wide range of pH, and was resistant to humic acid. The good adsorption and photocatalytic activity of TNTs@ACF was attributed to the well-defined hybrid structure, enabling corporative adsorption of DCF by TNTs and ACF, and extending the light absorbance to visible region. Furthermore, the description of degradation pathway and evaluation of ecotoxicity for DCF and its intermediates/byproduct were proposed based on experimental analysis, density functional theory (DFT) calculation and quantitative structure-activity relationship (QSAR) analysis, respectively, indicating the photocatalytic degradation of DCF can offer the step-by-step de-toxicity. Our study is expected to offer new strategy as "pre-accumulation and in-situ destruction" for environmental application.


Subject(s)
Nanotubes , Water Pollutants, Chemical , Adsorption , Carbon Fiber , Charcoal , Density Functional Theory , Diclofenac/toxicity , Ecosystem , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...