Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 49(4): 1033-1036, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38359246

ABSTRACT

Pressure is an important parameter in assessing combustion performance that is typically measured using contact sensors. However, contact sensors usually disturb combustion flows and suffer from the temperature tolerance limit of sensor materials. In this Letter, an innovative noncontact two-color pressure sensing method based on tunable diode laser absorption spectroscopy (TDLAS) is proposed. This makes it possible to measure pressure at high temperature environments for combustion diagnostics. The proposed method uses the linear combination of the collision-broadened linewidths of two H2O absorption lines near 1343 and 1392 nm to measure the pressure. The feasibility and performance of such method have been demonstrated by measuring pressures from 1 to 5 bars at temperatures up to 1300 K with a laser wavelength scanning rate of 20 kHz. Measurement errors were found to be within 3%. Compared to previously reported TDLAS pressure sensors, this method is free from the influence of concentration and can also be combined with the existing two-color TDLAS thermometry to realize a fast, on line, and multi-parameter measurement in combustion diagnostics.

2.
ACS Appl Mater Interfaces ; 11(37): 34478-34486, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31465195

ABSTRACT

Mosquito compound eyes are elaborate multifunctional hierarchical structures. The presence of ordered curved features spanning length scales of nanometers to millimeters provides the mosquito eye with a wide field of view, an infinite depth of field, and antifogging properties. Developing bio-inspired compound lenses is challenging because of the need to mimic all characteristic curvatures along with their functionalities. Herein, we show how the curvature inherent to nanoparticles, emulsion droplets, and liquid marbles can be employed to mimic the hierarchical structure and functionality of mosquito compound eyes. At the nanometer to micrometer length scale we employ nanoparticle-stabilized emulsion droplets of photocurable oil to form microlenses with nanoscale surface features. After polymerization, the microlenses form a monolayer on an oil droplet to create an optically clear, millimeter scale, liquid marble that functions as a compound lens. We characterize the optical and surface properties of the compound lenses and find that they reproduce the functionality of the mosquito eye. Additionally, we exploit the mobility and reconfigurability of liquid marbles to create arrays (centimeter scale) of compound lenses and other types of functional lenses such as the Janus lens that magnifies the image acquired by the compound lens. Simple and scalable methods to create compound lenses could aid in the development of miniaturized advanced vision systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...