Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 280
Filter
1.
Cell Rep ; 43(8): 114527, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39046873

ABSTRACT

The paracrine actions of adipokine plasminogen activator inhibitor-1 (PAI-1) are implicated in obesity-associated tumorigenesis. Here, we show that PAI-1 mediates extracellular matrix (ECM) signaling via epigenetic repression of DKK1 in endometrial epithelial cells (EECs). While the loss of DKK1 is known to increase ß-catenin accumulation for WNT signaling activation, this epigenetic repression causes ß-catenin release from transmembrane integrins. Furthermore, PAI-1 elicits the disengagement of TIMP2 and SPARC from integrin-ß1 on the cell surface, lifting an integrin-ß1-ECM signaling constraint. The heightened interaction of integrin-ß1 with type 1 collagen (COL1) remodels extracellular fibrillar structures in the ECM. Consequently, the enhanced nanomechanical stiffness of this microenvironment is conducive to EEC motility and neoplastic transformation. The formation of extensively branched COL1 fibrils is also observed in endometrial tumors of patients with obesity. The findings highlight PAI-1 as a contributor to enhanced integrin-COL1 engagement and extensive ECM remodeling during obesity-associated neoplastic development.

2.
Nat Commun ; 14(1): 6569, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848444

ABSTRACT

While macrophage phagocytosis is an immune defense mechanism against invading cellular organisms, cancer cells expressing the CD47 ligand send forward signals to repel this engulfment. Here we report that the reverse signaling using CD47 as a receptor additionally enhances a pro-survival function of prostate cancer cells under phagocytic attack. Although low CD47-expressing cancer cells still allow phagocytosis, the reverse signaling delays the process, leading to incomplete digestion of the entrapped cells and subsequent tumor hybrid cell (THC) formation. Viable THCs acquire c-Myc from parental cancer cells to upregulate both M1- and M2-like macrophage polarization genes. Consequently, THCs imitating dual macrophage features can confound immunosurveillance, gaining survival advantage in the host. Furthermore, these cells intrinsically express low levels of androgen receptor and its targets, resembling an adenocarcinoma-immune subtype of metastatic castration-resistant prostate cancer. Therefore, phagocytosis-generated THCs may represent a potential target for treating the disease.


Subject(s)
CD47 Antigen , Macrophages , Neoplasm Metastasis , Phagocytosis , Proto-Oncogene Proteins c-myc , Tumor Escape , Humans , Male , Carrier Proteins , CD47 Antigen/metabolism , Macrophages/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/immunology , Signal Transduction , Tumor Escape/genetics , Tumor Escape/immunology , Neoplasm Metastasis/genetics , Neoplasm Metastasis/immunology , Tumor Cells, Cultured
3.
Cell Rep ; 42(9): 113067, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37659081

ABSTRACT

Tumor-associated macrophages (TAMs) are integral to the development of complex tumor microenvironments (TMEs) and can execute disparate cellular programs in response to extracellular cues. However, upstream signaling processes underpinning this phenotypic plasticity remain to be elucidated. Here, we report that concordant AXL-STAT3 signaling in TAMs is triggered by lung cancer cells or cancer-associated fibroblasts in the cytokine milieu. This paracrine action drives TAM differentiation toward a tumor-promoting "M2-like" phenotype with upregulation of CD163 and putative mesenchymal markers, contributing to TAM heterogeneity and diverse cellular functions. One of the upregulated markers, CD44, mediated by AXL-IL-11-pSTAT3 signaling cascade, enhances macrophage ability to interact with endothelial cells and facilitate formation of primitive vascular networks. We also found that AXL-STAT3 inhibition can impede the recruitment of TAMs in a xenograft mouse model, thereby suppressing tumor growth. These findings suggest the potential application of AXL-STAT3-related markers to quantitatively assess metastatic potential and inform therapeutic strategies in lung cancer.


Subject(s)
Lung Neoplasms , Tumor-Associated Macrophages , Humans , Animals , Mice , Endothelial Cells , Signal Transduction , Cell Differentiation , Tumor Microenvironment , Cell Line, Tumor
4.
Mol Cell ; 83(19): 3438-3456.e12, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37738977

ABSTRACT

Transcription factors (TFs) activate enhancers to drive cell-specific gene programs in response to signals, but our understanding of enhancer assembly during signaling events is incomplete. Here, we show that androgen receptor (AR) forms condensates through multivalent interactions mediated by its N-terminal intrinsically disordered region (IDR) to orchestrate enhancer assembly in response to androgen signaling. AR IDR can be substituted by IDRs from selective proteins for AR condensation capacity and its function on enhancers. Expansion of the poly(Q) track within AR IDR results in a higher AR condensation propensity as measured by multiple methods, including live-cell single-molecule microscopy. Either weakening or strengthening AR condensation propensity impairs its heterotypic multivalent interactions with other enhancer components and diminishes its transcriptional activity. Our work reveals the requirement of an optimal level of AR condensation in mediating enhancer assembly and suggests that alteration of the fine-tuned multivalent IDR-IDR interactions might underlie AR-related human pathologies.


Subject(s)
Enhancer Elements, Genetic , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Hormones , Signal Transduction
6.
Hepatology ; 78(5): 1506-1524, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37129868

ABSTRACT

BACKGROUND AND AIMS: Lipid accumulation induced by alcohol consumption is not only an early pathophysiological response but also a prerequisite for the progression of alcohol-associated liver disease (ALD). Alternative splicing regulates gene expression and protein diversity; dysregulation of this process is implicated in human liver diseases. However, how the alternative splicing regulation of lipid metabolism contributes to the pathogenesis of ALD remains undefined. APPROACH AND RESULTS: Serine-arginine-rich protein kinase 2 (SRPK2), a key kinase controlling alternative splicing, is activated in hepatocytes in response to alcohol, in mice with chronic-plus-binge alcohol feeding, and in patients with ALD. Such induction activates sterol regulatory element-binding protein 1 and promotes lipogenesis in ALD. Overexpression of FGF21 in transgenic mice abolishes alcohol-mediated induction of SRPK2 and its associated steatosis, lipotoxicity, and inflammation; these alcohol-induced pathologies are exacerbated in FGF21 knockout mice. Mechanistically, SRPK2 is required for alcohol-mediated impairment of serine-arginine splicing factor 10, which generates exon 7 inclusion in lipin 1 and triggers concurrent induction of lipogenic regulators-lipin 1ß and sterol regulatory element-binding protein 1. FGF21 suppresses alcohol-induced SRPK2 accumulation through mammalian target of rapamycin complex 1 inhibition-dependent degradation of SRPK2. Silencing SRPK2 rescues alcohol-induced splicing dysregulation and liver injury in FGF21 knockout mice. CONCLUSIONS: These studies reveal that (1) the regulation of alternative splicing by SRPK2 is implicated in lipogenesis in humans with ALD; (2) FGF21 is a key hepatokine that ameliorates ALD pathologies largely by inhibiting SRPK2; and (3) targeting SRPK2 signaling by FGF21 may offer potential therapeutic approaches to combat ALD.


Subject(s)
Arginine Kinase , Liver Diseases, Alcoholic , Humans , Mice , Animals , Protein Serine-Threonine Kinases/metabolism , Lipogenesis/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Arginine Kinase/genetics , Arginine Kinase/metabolism , Alternative Splicing , Liver/pathology , Liver Diseases, Alcoholic/metabolism , Ethanol/toxicity , Mice, Knockout , Mammals/metabolism
7.
Cancer Med ; 12(7): 8970-8980, 2023 04.
Article in English | MEDLINE | ID: mdl-36583228

ABSTRACT

BACKGROUND: Bladder tumor-infiltrating CD56bright NK cells are more tumor cytotoxic than their CD56dim counterparts. Identification of NK cell subsets is labor-intensive and has limited utility in the clinical setting. Here, we sought to identify a surrogate marker of bladder CD56bright NK cells and to test its prognostic significance. METHODS: CD56bright and CD56dim NK cells were characterized with the multiparametric flow (n = 20) and mass cytometry (n = 21) in human bladder tumors. Transcriptome data from bladder tumors (n = 351) profiled by The Cancer Genome Atlas (TCGA) were analyzed. The expression levels of individual markers in intratumoral CD56bright and CD56dim NK cells were visualized in tSNE plots. Expressions of activation markers were also compared between Killer Cell Lectin-Like Receptor Subfamily F Member 1 (KLRF1)+ and KLRF1- NK cells. RESULTS: Intratumoral CD56bright NK cells displayed a more activated phenotype compared to the CD56dim subset. Multiple intratumoral cell types expressed CD56, including bladder tumor cells and nonspecific intratumoral CD56 expression was associated with worse patient survival. Thus, an alternative to CD56 as a marker of CD56bright NK cells was sought. The activation receptor KLRF1 was significantly increased on CD56bright but not on CD56dim NK cells. Intratumoral KLRF1+ NK cells were more activated and expressed higher levels of activation molecules compared with KLRF1- NK cells, analogous to the distinct effector function of NK cells across CD56 expression. High intratumoral KLRF1 was associated with improved recurrence-free survival (hazard ratio [HR] 0.53, p = 0.01), cancer-specific survival (HR 0.47, p = 0.02), and overall survival (HR 0.54, p = 0.02) on multivariable analyses that adjusted for clinical and pathologic variables. CONCLUSIONS: KLRF1 is a promising prognostic marker in bladder cancer and may guide treatment decisions upon validation.


Subject(s)
Killer Cells, Natural , Urinary Bladder Neoplasms , Humans , Killer Cells, Natural/metabolism , Biomarkers/metabolism , Phenotype , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism
8.
Cancer Res ; 82(24): 4624-4640, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36222718

ABSTRACT

The immunosuppressive tumor microenvironment in some cancer types, such as luminal breast cancer, supports tumor growth and limits therapeutic efficacy. Identifying approaches to induce an immunostimulatory environment could help improve cancer treatment. Here, we demonstrate that inhibition of cancer-intrinsic EZH2 promotes antitumor immunity in estrogen receptor α-positive (ERα+) breast cancer. EZH2 is a component of the polycomb-repressive complex 2 (PRC2) complex, which catalyzes trimethylation of histone H3 at lysine 27 (H3K27me3). A 53-gene PRC2 activity signature was closely associated with the immune responses of ERα+ breast cancer cells. The stimulatory effects of EZH2 inhibition on immune surveillance required specific activation of type I IFN signaling. Integrative analysis of PRC2-repressed genes and genome-wide H3K27me3 landscape revealed that type I IFN ligands are epigenetically silenced by H3K27me3. Notably, the transcription factor STAT2, but not STAT1, mediated the immunostimulatory functions of type I IFN signaling. Following EZH2 inhibition, STAT2 was recruited to the promoters of IFN-stimulated genes even in the absence of the cytokines, suggesting the formation of an autocrine IFN-STAT2 axis. In patients with luminal breast cancer, high levels of EZH2 and low levels of STAT2 were associated with the worst antitumor immune responses. Collectively, this work paves the way for the development of an effective therapeutic strategy that may reverse immunosuppression in cancer. SIGNIFICANCE: Inhibition of EZH2 activates a type I IFN-STAT2 signaling axis and provides a therapeutic strategy to stimulate antitumor immunity and therapy responsiveness in immunologically cold luminal breast cancer.


Subject(s)
Breast Neoplasms , Polycomb Repressive Complex 2 , Humans , Female , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Histones/metabolism , Estrogen Receptor alpha/genetics , STAT2 Transcription Factor/genetics , Breast Neoplasms/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Methylation , Epigenesis, Genetic , Tumor Microenvironment
9.
Cancer Res ; 82(20): 3830-3844, 2022 10 17.
Article in English | MEDLINE | ID: mdl-35950923

ABSTRACT

Most patients with estrogen receptor alpha-positive (ER+) breast cancers initially respond to treatment but eventually develop therapy resistance with disease progression. Overexpression of oncogenic ER coregulators, including proline, glutamic acid, and leucine-rich protein 1 (PELP1), are implicated in breast cancer progression. The lack of small molecules that inhibits PELP1 represents a major knowledge gap. Here, using a yeast-two-hybrid screen, we identified novel peptide inhibitors of PELP1 (PIP). Biochemical assays demonstrated that one of these peptides, PIP1, directly interacted with PELP1 to block PELP1 oncogenic functions. Computational modeling of PIP1 revealed key residues contributing to its activity and facilitated the development of a small-molecule inhibitor of PELP1, SMIP34, and further analyses confirmed that SMIP34 directly bound to PELP1. In breast cancer cells, SMIP34 reduced cell growth in a dose-dependent manner. SMIP34 inhibited proliferation of not only wild-type (WT) but also mutant (MT) ER+ and therapy-resistant breast cancer cells, in part by inducing PELP1 degradation via the proteasome pathway. RNA sequencing analyses showed that SMIP34 treatment altered the expression of genes associated with estrogen response, cell cycle, and apoptosis pathways. In cell line-derived and patient-derived xenografts of both WT and MT ER+ breast cancer models, SMIP34 reduced proliferation and significantly suppressed tumor progression. Collectively, these results demonstrate SMIP34 as a first-in-class inhibitor of oncogenic PELP1 signaling in advanced breast cancer. SIGNIFICANCE: Development of a novel inhibitor of oncogenic PELP1 provides potential therapeutic avenues for treating therapy-resistant, advanced ER+ breast cancer.


Subject(s)
Breast Neoplasms , Co-Repressor Proteins , Transcription Factors , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Co-Repressor Proteins/antagonists & inhibitors , Co-Repressor Proteins/metabolism , Estrogen Receptor alpha/genetics , Estrogens , Female , Glutamic Acid , Humans , Leucine , Proline , Proteasome Endopeptidase Complex , Receptors, Estrogen/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism
10.
Nucleic Acids Res ; 50(8): 4450-4463, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35394046

ABSTRACT

Mediator activates RNA polymerase II (Pol II) function during transcription, but it remains unclear whether Mediator is able to travel with Pol II and regulate Pol II transcription beyond the initiation and early elongation steps. By using in vitro and in vivo transcription recycling assays, we find that human Mediator 1 (MED1), when phosphorylated at the mammal-specific threonine 1032 by cyclin-dependent kinase 9 (CDK9), dynamically moves along with Pol II throughout the transcribed genes to drive Pol II recycling after the initial round of transcription. Mechanistically, MED31 mediates the recycling of phosphorylated MED1 and Pol II, enhancing mRNA output during the transcription recycling process. Importantly, MED1 phosphorylation increases during prostate cancer progression to the lethal phase, and pharmacological inhibition of CDK9 decreases prostate tumor growth by decreasing MED1 phosphorylation and Pol II recycling. Our results reveal a novel role of MED1 in Pol II transcription and identify phosphorylated MED1 as a targetable driver of dysregulated Pol II recycling in cancer.


Subject(s)
Neoplasms , RNA Polymerase II , Animals , Humans , Male , Mammals/genetics , Mediator Complex/metabolism , Mediator Complex Subunit 1/genetics , Neoplasms/genetics , Phosphorylation , RNA Polymerase II/metabolism , Transcription, Genetic
11.
Cell Metab ; 34(4): 564-580.e8, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385705

ABSTRACT

Hepatokines, secretory proteins from the liver, mediate inter-organ communication to maintain a metabolic balance between food intake and energy expenditure. However, molecular mechanisms by which hepatokine levels are rapidly adjusted following stimuli are largely unknown. Here, we unravel how CNOT6L deadenylase switches off hepatokine expression after responding to stimuli (e.g., exercise and food) to orchestrate energy intake and expenditure. Mechanistically, CNOT6L inhibition stabilizes hepatic Gdf15 and Fgf21 mRNAs, increasing corresponding serum protein levels. The resulting upregulation of GDF15 stimulates the hindbrain to suppress appetite, while increased FGF21 affects the liver and adipose tissues to induce energy expenditure and lipid consumption. Despite the potential of hepatokines to treat metabolic disorders, their administration therapies have been challenging. Using small-molecule screening, we identified a CNOT6L inhibitor enhancing GDF15 and FGF21 hepatokine levels, which dramatically improves diet-induced metabolic syndrome. Our discovery, therefore, lays the foundation for an unprecedented strategy to treat metabolic syndrome.


Subject(s)
Metabolic Syndrome , RNA Stability , Animals , Eating , Energy Metabolism/genetics , Fibroblast Growth Factors/metabolism , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Humans , Liver/metabolism , Metabolic Syndrome/metabolism , Mice , RNA Stability/genetics , RNA Stability/physiology , Ribonucleases/metabolism
12.
Cell Rep ; 38(2): 110220, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35021081

ABSTRACT

The epigenome delineates lineage-specific transcriptional programs and restricts cell plasticity to prevent non-physiological cell fate transitions. Although cell diversification fosters tumor evolution and therapy resistance, upstream mechanisms that regulate the stability and plasticity of the cancer epigenome remain elusive. Here we show that 2-hydroxyglutarate (2HG) not only suppresses DNA repair but also mediates the high-plasticity chromatin landscape. A combination of single-cell epigenomics and multi-omics approaches demonstrates that 2HG disarranges otherwise well-preserved stable nucleosome positioning and promotes cell-to-cell variability. 2HG induces loss of motif accessibility to the luminal-defining transcriptional factors FOXA1, FOXP1, and GATA3 and a shift from luminal to basal-like gene expression. Breast tumors with high 2HG exhibit enhanced heterogeneity with undifferentiated epigenomic signatures linked to adverse prognosis. Further, ascorbate-2-phosphate (A2P) eradicates heterogeneity and impairs growth of high 2HG-producing breast cancer cells. These findings suggest 2HG as a key determinant of cancer plasticity and provide a rational strategy to counteract tumor cell evolution.


Subject(s)
Chromatin/metabolism , Glutarates/metabolism , Alcohol Oxidoreductases/metabolism , Ascorbic Acid/analogs & derivatives , Ascorbic Acid/metabolism , Cell Differentiation , Cell Line, Tumor , DNA Repair/physiology , Epigenome/genetics , Forkhead Transcription Factors/genetics , Gene Expression/genetics , Gene Expression Regulation/genetics , Humans , Isocitrate Dehydrogenase/genetics , Neoplasms/genetics , Neoplasms/metabolism , Nucleosomes/metabolism , Repressor Proteins/genetics
13.
Cell Oncol (Dordr) ; 45(1): 19-40, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34997546

ABSTRACT

BACKGROUND: The EWSR1/FLI1 gene fusion is the most common rearrangement leading to cell transformation in Ewing sarcoma (ES). Previous studies have indicated that expression at the cellular level is heterogeneous, and that levels of expression may oscillate, conferring different cellular characteristics. In ES the role of EWSR1/FLI1 in regulating subpopulation dynamics is currently unknown. METHODS: We used siRNA to transiently suppress EWSR1/FLI1 expression and followed population dynamics using both single cell expression profiling, CyTOF and functional assays to define characteristics of exponentially growing ES cells and of ES cells in which EWSR1/FLI1 had been downregulated. Novel transcriptional states with distinct features were assigned using random forest feature selection in combination with machine learning. Cells isolated from ES xenografts in immune-deficient mice were interrogated to determine whether characteristics of specific subpopulations of cells in vitro could be identified. Stem-like characteristics were assessed by primary and secondary spheroid formation in vitro, and invasion/motility was determined for each identified subpopulation. Autophagy was determined by expression profiling, cell sorting and immunohistochemical staining. RESULTS: We defined a workflow to study EWSR1/FLI1 driven transcriptional states and phenotypes. We tracked EWSR1/FLI1 dependent proliferative activity over time to discover sources of intra-tumoral diversity. Single-cell RNA profiling was used to compare expression profiles in exponentially growing populations (si-Control) or in two dormant populations (D1, D2) in which EWSR1/FLI1 had been suppressed. Three distinct transcriptional states were uncovered contributing to ES intra-heterogeneity. Our predictive model identified ~1% cells in a dormant-like state and ~ 2-4% cells with stem-like and neural stem-like features in an exponentially proliferating ES cell line and in ES xenografts. Following EWSR1/FLI1 knockdown, cells re-entering the proliferative cycle exhibited greater stem-like properties, whereas for those cells remaining quiescent, FAM134B-dependent dormancy may provide a survival mechanism. CONCLUSIONS: We show that time-dependent changes induced by suppression of oncogenic EWSR1/FLI1 expression induces dormancy, with different subpopulation dynamics. Cells re-entering the proliferative cycle show enhanced stem-like characteristics, whereas those remaining dormant for prolonged periods appear to survive through autophagy. Cells with these characteristics identified in exponentially growing cell populations and in tumor xenografts may confer drug resistance and could potentially contribute to metastasis.


Subject(s)
Sarcoma, Ewing , Animals , Carcinogenesis , Cell Line, Tumor , Down-Regulation/genetics , Humans , Mice , Oncogene Proteins, Fusion/genetics , RNA , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology
14.
Mol Cancer Res ; 20(1): 62-76, 2022 01.
Article in English | MEDLINE | ID: mdl-34610962

ABSTRACT

Although the Sonic hedgehog (SHH) signaling pathway has been implicated in promoting malignant phenotypes of prostate cancer, details on how it is activated and exerts its oncogenic role during prostate cancer development and progression is less clear. Here, we show that GLI3, a key SHH pathway effector, is transcriptionally upregulated during androgen deprivation and posttranslationally stabilized in prostate cancer cells by mutation of speckle-type POZ protein (SPOP). GLI3 is a substrate of SPOP-mediated proteasomal degradation in prostate cancer cells and prostate cancer driver mutations in SPOP abrogate GLI3 degradation. Functionally, GLI3 is necessary and sufficient for the growth and migration of androgen receptor (AR)-positive prostate cancer cells, particularly under androgen-depleted conditions. Importantly, we demonstrate that GLI3 physically interacts and functionally cooperates with AR to enrich an AR-dependent gene expression program leading to castration-resistant growth of xenografted prostate tumors. Finally, we identify an AR/GLI3 coregulated gene signature that is highly correlated with castration-resistant metastatic prostate cancer and predictive of disease recurrence. Together, these findings reveal that hyperactivated GLI3 promotes castration-resistant growth of prostate cancer and provide a rationale for therapeutic targeting of GLI3 in patients with castration-resistant prostate cancer (CRPC). IMPLICATIONS: We describe two clinically relevant mechanisms leading to hyperactivated GLI3 signaling and enhanced AR/GLI3 cross-talk, suggesting that GLI3-specific inhibitors might prove effective to block prostate cancer development or delay CRPC.


Subject(s)
Nerve Tissue Proteins/metabolism , Nuclear Proteins , Prostatic Neoplasms, Castration-Resistant/genetics , Repressor Proteins/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Zinc Finger Protein Gli3/metabolism , Animals , Cell Line, Tumor , Humans , Male , Mice , Mutation , Receptors, Androgen/metabolism
15.
Mol Cell Endocrinol ; 539: 111481, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34624439

ABSTRACT

Endometriosis is a debilitating gynecologic disorder that affects ∼10% of women of reproductive age. Endometriosis is characterized by growth of endometriosis lesions within the abdominal cavity, generally thought to arise from retrograde menstruation of shed endometrial tissue. While the pathophysiology underlying peritoneal endometriosis lesion formation is still unclear, the interaction between invading endometrial tissue and the peritoneal mesothelial lining is an essential step in lesion formation. In this study, we assessed proteomic differences between eutopic endometrial stromal cells (ESCs) from women with and without endometriosis in response to peritoneal mesothelial cell (PMC) exposure, using single-cell cytometry by time-of-flight (CyTOF). Co-cultured primary eutopic ESCs from women with and without endometriosis with an established PMC line were subjected to immunostaining with a panel of Maxpar CyTOF metal-conjugated antibodies (n = 28) targeting cell junction and mesenchymal markers, which are involved in cell-cell adhesions and epithelial-mesenchymal transition. Exposure of the ESCs to PMCs resulted in a drastic shift in cellular expression profiles in ESCs derived from endometriosis, whereas little effect by PMCs was observed in ESCs from non-endometriosis subjects. The transcription factor SNAI1 was consistently repressed by PMC interactions. ESCs from endometriosis patients are unique in that they respond to PMCs by undergoing changes in adhesive properties and mesenchymal characteristics that would facilitate lesion formation.


Subject(s)
Biomarkers/metabolism , Endometriosis/metabolism , Endometrium/cytology , Epithelium/metabolism , Intercellular Junctions/metabolism , Proteomics/methods , Cells, Cultured , Coculture Techniques , Computational Biology , Endometrium/metabolism , Endometrium/pathology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Humans , Single-Cell Analysis , Stromal Cells/cytology , Stromal Cells/metabolism
16.
IEEE/ACM Trans Comput Biol Bioinform ; 19(3): 1344-1353, 2022.
Article in English | MEDLINE | ID: mdl-34662279

ABSTRACT

Interpretability of machine learning (ML) models represents the extent to which a model's decision-making process can be understood by model developers and/or end users. Transcriptomics-based cancer prognosis models, for example, while achieving good accuracy, are usually hard to interpret, due to the high-dimensional feature space and the complexity of models. As interpretability is critical for the transparency and fairness of ML models, several algorithms have been proposed to improve the interpretability of arbitrary classifiers. However, evaluation of these algorithms often requires substantial domain knowledge. Here, we propose a breast cancer metastasis prediction model using a very small number of biologically interpretable features, and a simple yet novel model interpretation approach that can provide personalized interpretations. In addition, we contributed, to the best of our knowledge, the first method to quantitatively compare different interpretation algorithms. Experimental results show that our model not only achieved competitive prediction accuracy, but also higher inter-classifier interpretation consistency than state-of-the-art interpretation methods. Importantly, our interpretation results can improve the generalizability of the prediction models. Overall, this work provides several novel ideas to construct and evaluate interpretable ML models that can be valuable to both the cancer machine learning community and related application domains.


Subject(s)
Breast Neoplasms , Melanoma , Algorithms , Breast Neoplasms/genetics , Female , Humans , Machine Learning , Skin Neoplasms , Melanoma, Cutaneous Malignant
17.
Aging (Albany NY) ; 13(24): 25607-25642, 2021 12 30.
Article in English | MEDLINE | ID: mdl-34968192

ABSTRACT

Aging is accompanied by osteopenia, characterized by reduced bone formation and increased bone resorption. Osteocytes, the terminally differentiated osteoblasts, are regulators of bone homeostasis, and parathyroid hormone (PTH) receptor (PPR) signaling in mature osteoblasts/osteocytes is essential for PTH-driven anabolic and catabolic skeletal responses. However, the role of PPR signaling in those cells during aging has not been investigated. The aim of this study was to analyze the role of PTH signaling in mature osteoblasts/osteocytes during aging. Mice lacking PPR in osteocyte (Dmp1-PPRKO) display an age-dependent osteopenia characterized by a significant decrease in osteoblast activity and increase in osteoclast number and activity. At the molecular level, the absence of PPR signaling in mature osteoblasts/osteocytes is associated with an increase in serum sclerostin and a significant increase in osteocytes expressing 4-hydroxy-2-nonenals, a marker of oxidative stress. In Dmp1-PPRKO mice there was an age-dependent increase in p16Ink4a/Cdkn2a expression, whereas it was unchanged in controls. In vitro studies demonstrated that PTH protects osteocytes from oxidative stress-induced cell death. In summary, we reported that PPR signaling in osteocytes is important for protecting the skeleton from age-induced bone loss by restraining osteoclast's activity and protecting osteocytes from oxidative stresses.


Subject(s)
Osteoblasts/drug effects , Osteoclasts/drug effects , Osteocytes/drug effects , Parathyroid Hormone/pharmacology , Receptor, Parathyroid Hormone, Type 1/metabolism , Signal Transduction/drug effects , Animals , Bone Diseases, Metabolic/pathology , Bone Resorption/metabolism , Bone and Bones/cytology , Bone and Bones/drug effects , Bone and Bones/metabolism , Homeostasis/drug effects , Mice , Mice, Knockout , Osteoblasts/cytology , Osteoblasts/metabolism , Osteoclasts/cytology , Osteoclasts/metabolism , Osteocytes/metabolism , Osteoporosis/metabolism
19.
Cancer Med ; 10(20): 7101-7110, 2021 10.
Article in English | MEDLINE | ID: mdl-34496133

ABSTRACT

PURPOSE: Human innate lymphoid cells (hILCs) are lineage-negative immune cells that do not express rearranged adaptive antigen receptors. Natural killer (NK) cells are hILCs that contribute to cancer defense. The role of non-NK hILCs in cancer is unclear. Our study aimed to characterize non-NK hILCs in bladder cancer. EXPERIMENTAL DESIGN: Mass cytometry was used to characterize intratumoral non-NK hILCs based on 35 parameters, including receptors, cytokines, and transcription factors from 21 muscle-invasive bladder tumors. Model-based clustering was performed on t-distributed stochastic neighbor embedding (t-SNE) coordinates of hILCs, and the association of hILCs with tumor stage was analyzed. RESULTS: Most frequent among intratumoral non-NK hILCs were hILC1s, which were increased in higher compared with lower stage tumors. Intratumoral hILC1s were marked by Th17-like phenotype with high RORγt, IL-17, and IL-22 compared to Th1 differentiation markers, including Tbet, perforin, and IFN-γ. Compared with intratumoral hILC2s and hILC3s, hILC1s also had lower expression of activation markers (NKp30, NKp46, and CD69) and increased expression of exhaustion molecules (PD-1 and Tim3). Unsupervised clustering identified nine clusters of bladder hILCs, which were not defined by the primary hILC subtypes 1-3. hILC1s featured in all the nine clusters indicating that intratumoral hILC1s displayed the highest phenotypic heterogeneity among all hILCs. CONCLUSIONS: hILC1s are increased in higher stage tumors among patients with muscle-invasive bladder cancer. These intratumoral hILC1s exhibit an exhausted phenotype and Th17-like differentiation, identifying them as potential targets for immunotherapy.


Subject(s)
Cell Differentiation , Lymphocytes, Tumor-Infiltrating/cytology , Th17 Cells/cytology , Urinary Bladder Neoplasms/pathology , Aged , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Female , Flow Cytometry , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Image Cytometry , Immunity, Cellular , Interferon-gamma/metabolism , Interleukin-17/metabolism , Interleukins/metabolism , Lectins, C-Type/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Natural Cytotoxicity Triggering Receptor 1/metabolism , Natural Cytotoxicity Triggering Receptor 3/metabolism , Neoplasm Invasiveness , Perforin/metabolism , Programmed Cell Death 1 Receptor/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Urinary Bladder Neoplasms/immunology , Interleukin-22
20.
J Transl Genet Genom ; 5: 1-21, 2021.
Article in English | MEDLINE | ID: mdl-34322662

ABSTRACT

Among single-cell analysis technologies, single-cell RNA-seq (scRNA-seq) has been one of the front runners in technical inventions. Since its induction, scRNA-seq has been well received and undergone many fast-paced technical improvements in cDNA synthesis and amplification, processing and alignment of next generation sequencing reads, differentially expressed gene calling, cell clustering, subpopulation identification, and developmental trajectory prediction. scRNA-seq has been exponentially applied to study global transcriptional profiles in all cell types in humans and animal models, healthy or with diseases, including cancer. Accumulative novel subtypes and rare subpopulations have been discovered as potential underlying mechanisms of stochasticity, differentiation, proliferation, tumorigenesis, and aging. scRNA-seq has gradually revealed the uncharted territory of cellular heterogeneity in transcriptomes and developed novel therapeutic approaches for biomedical applications. This review of the advancement of scRNA-seq methods provides an exploratory guide of the quickly evolving technical landscape and insights of focused features and strengths in each prominent area of progress.

SELECTION OF CITATIONS
SEARCH DETAIL
...