Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Ecotoxicol Environ Saf ; 281: 116612, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896898

ABSTRACT

T-2 toxin is one of trichothecene mycotoxins, which can impair appetite and decrease food intake. However, the specific mechanisms for T-2 toxin-induced anorexia are not fully clarified. Multiple research results had shown that gut microbiota have a significant effect on appetite regulation. Hence, this study purposed to explore the potential interactions of the gut microbiota and appetite regulate factors in anorexia induced by T-2 toxin. The study divided the mice into control group (CG, 0 mg/kg BW T-2 toxin) and T-2 toxin-treated group (TG, 1 mg/kg BW T-2 toxin), which oral gavage for 4 weeks, to construct a subacute T-2 toxin poisoning mouse model. This data proved that T-2 toxin was able to induce an anorexia in mice by increased the contents of gastrointestinal hormones (CCK, GIP, GLP-1 and PYY), neurotransmitters (5-HT and SP), as well as pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α) in serum of mice. T-2 toxin disturbed the composition of gut microbiota, especially, Faecalibaculum and Allobaculum, which was positively correlated with CCK, GLP-1, 5-HT, IL-1ß, IL-6 and TNF-α, which played a certain role in regulating host appetite. In conclusion, gut microbiota changes (especially an increase in the abundance of Faecalibaculum and Allobaculum) promote the upregulation of gastrointestinal hormones, neurotransmitters, and pro-inflammatory cytokines, which may be a potential mechanism of T-2 toxin-induced anorexia.


Subject(s)
Anorexia , Gastrointestinal Microbiome , T-2 Toxin , Animals , T-2 Toxin/toxicity , Gastrointestinal Microbiome/drug effects , Anorexia/chemically induced , Mice , Cytokines/metabolism , Gastrointestinal Hormones/metabolism , Male
2.
J Forensic Sci ; 69(4): 1222-1234, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38798027

ABSTRACT

Due to the complex nature of the chemical compositions of ignitable liquids (IL) and the interferences from fire debris matrices, interpreting chromatographic data poses challenges to analysts. In this work, artificial intelligence (AI) was developed by transfer learning in a convolutional neural network (CNN), GoogLeNet. The image classification AI was fine-tuned to create intelligent classification systems to discriminate samples containing gasoline residues from burned substrates. All ground truth samples were analyzed by headspace solid-phase microextraction (HS-SPME) coupled with a gas chromatograph and mass spectrometer (GC/MS). The HS-SPME-GC/MS data were transformed into three types of image presentations, that is, heatmaps, extracted ion heatmaps, and total ion chromatograms. The abundance and mass-to-charge ratios of each scan were converted into image patterns that are characteristic of the chemical profiles of gasoline. The transfer learning data were labeled as "gasoline present" and "gasoline absent" classes. The assessment results demonstrated that all AI models achieved 100 ± 0% accuracy in identifying neat gasoline. When the models were assessed using the spiked samples, the AI model developed using the extracted ion heatmap obtained the highest accuracy rate (95.9 ± 0.4%), which was greater than those obtained by other machine learning models, ranging from 17.3 ± 0.7% to 78.7 ± 0.7%. The proposed work demonstrated that the heatmaps created from GC/MS data can represent chemical features from the samples. Additionally, the pretrained CNN models are readily available in the transfer learning workflow to develop AI for GC/MS data interpretation in fire debris analysis.

3.
J Med Virol ; 96(3): e29556, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38511554

ABSTRACT

Neutrophil extracellular traps (NETs) play a role in innate pathogen defense and also trigger B-cell response by providing antigens. NETs have been linked to vaccine-induced thrombotic thrombocytopenia. We postulated a potential link between NET biomarkers, NET-promoting autoantibodies, and adverse events (AEs) after COVID-19 vaccine boosters. Healthy donors (HDs) who received ChAdOx1-S (A), mRNA-1273 (M), or recombinant protein (MVC-COV1901) vaccines at the National Taiwan University Hospital between 2021 and 2022 were recruited. We measured serial NET-associated biomarkers, citrullinated-histone3 (citH3), and myeloperoxidase (MPO)-DNA. Serum citH3 and MPO-DNA were significantly or numerically higher in HDs who reported AEs (n = 100, booster Day 0/Day 30, p = 0.01/p = 0.03 and p = 0.30/p = 0.35, respectively). We also observed a positive correlation between rash occurrence in online diaries and elevated citH3. A linear mixed model also revealed significantly higher citH3 levels in mRNA-1273/ChAdOx1-S recipients than MVC-COV1901 recipients. Significant positive correlations were observed between the ratios of anti-heparin platelet factor 4 and citH3 levels on Booster Day 0 and naïve and between the ratios of anti-NET IgM and citH3 on Booster Day 30/Day 0 in the AA-M and MM-M group, respectively. The increased levels of citH3/MPO-DNA accompanied by NET-promoting autoantibodies suggest a potential connection between mRNA-1273/ChAdOx1-S vaccines and cardiovascular complications. These findings provide insights for risk assessments of future vaccines.


Subject(s)
COVID-19 , Extracellular Traps , Humans , Extracellular Traps/metabolism , COVID-19 Vaccines/adverse effects , Autoantibodies , 2019-nCoV Vaccine mRNA-1273 , RNA, Messenger/genetics , RNA, Messenger/metabolism , COVID-19/prevention & control , COVID-19/metabolism , Biomarkers , ChAdOx1 nCoV-19 , Vaccination , DNA/metabolism , Adenoviridae
4.
Org Biomol Chem ; 22(8): 1639-1645, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38180439

ABSTRACT

Sialic acid (SA) is a naturally occurring monosaccharide found in glycoproteins and glycolipids. Changes in the expression of SA are associated with several diseases; thus, the detection of SA is of great significance for biological research, cancer diagnosis, and treatment. Boronic acid analogs have emerged as a promising tool for detecting sugars such as SA due to its reversible covalent bonding ability. In this study, 11 bis-boronic acid compounds and 2 mono-boronic acid compounds were synthesized via a highly efficient Ugi-4CR strategy. The synthesized compounds were subjected to affinity fluorescence binding experiments to evaluate their binding capability to SA. Compound A1 was shown to have a promising binding constant of 2602 ± 100 M-1 at pH = 6.0. Density Functional Theory (DFT) calculations examining the binding modes between A1 and SA indicated that the position of the boronic acid functional group was strongly correlated with its interaction with SA's α-hydroxy acid unit. The DFT calculations were consistent with the observations from the fluorescence experiments, demonstrating that the number and relative positions of the boronic acid functional groups are critical factors in enhancing the binding affinity to SA. DFT calculations of both S and R configuration of A1 indicated that the effect of the S/R configuration of A1 on its binding with ß-sialic acid was insignificant as the Ugi-4CR generated racemic products. A fluorine atom was incorporated into the R2 substituent of A1 as an electron-withdrawing group to produce A5, which possessed a significantly higher capability to bind to SA (Keq = 7015 ± 5 M-1 at pH = 6.0). Finally, A1 and A5 were shown to possess exceptional binding selectivity toward ß-sialic acid under pH of 6.0 and 6.5 while preferring to bind with glucose, fructose, and galactose under pH of 7.0 and 7.5.


Subject(s)
Boronic Acids , N-Acetylneuraminic Acid , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Boronic Acids/chemistry , Monosaccharides , Glucose , Galactose
5.
Front Psychol ; 14: 1170669, 2023.
Article in English | MEDLINE | ID: mdl-37560098

ABSTRACT

Introduction: Though the important effect of cultural identity on subjective well-being is widely acknowledged, the details of how different cultures' unique features influence well-being remain to be revealed. To address this issue in the context of Chinese culture, the present study investigates whether and how the prominent features of Chinese culture-collectivism and red culture-shape Chinese people's subjective well-being. Methods: The Red Cultural Identity Scale, Subjective Well-Being Scale, Collectivism Scale, and Perspective-Taking Scale were used to assess 1,045 Chinese residents. Results: The results showed that red cultural identity positively predicted participants' subjective well-being through the mediated role of collectivism. Furthermore, perspective-taking was found to moderate the mediating effect of collectivism. Discussion: These results demonstrate that the way cultural identity predicts subjective well-being is highly correlated to specific cultural features, e.g., the opinion of values, which was significant in practice with a cross-cultural background.

6.
Food Chem Toxicol ; 179: 113982, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37553049

ABSTRACT

The presence of anorexia in animals is the most well-known clinical symptom of T-2 toxin poisoning. T-2 toxin is the most characteristic type A toxin in the trichothecene mycotoxins. The consumption of T-2 toxin can cause anorexic response in mice, rats, rabbits, and other animals. In this review, the basic information of T-2 toxin, appetite regulation mechanism and the molecular mechanism of T-2 toxin-induced anorectic response in animals are presented and discussed. The objective of this overview is to describe the research progress of anorexia in animals produced by T-2 toxin. T-2 toxin mainly causes antifeedant reaction through four pathways: vagus nerve, gastrointestinal hormone, neurotransmitter and cytokine. This review aims to give an academic basis and useable reference for the prevention and treatment of clinical symptoms of anorexia in animals resulting from T-2 toxin.


Subject(s)
Appetite Depressants , Mycotoxins , T-2 Toxin , Mice , Rats , Animals , Rabbits , Anorexia/chemically induced , Mycotoxins/adverse effects , Neurotransmitter Agents
7.
Environ Pollut ; 330: 121784, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37169237

ABSTRACT

T-2 toxin, a type A trichothecene, is a secondary metabolite produced by Fusarium poae, Fusarium sporotrichioides, and Fusarium tricinctum. As the most toxic trichothecenes, T-2 toxin causes severe damage to multiple organs, especially to liver. However, the contamination of T-2 toxin covers a wide range of plants, including nuts, grains, fruits and herbs globally. And due to chemical stability of T-2 toxin, it is difficult to be completely removed from the food and feeds, which poses a great threat to human and animal health. Liver is the major detoxifying organ which also makes it the main target of T-2 toxin. After being absorbed by intestine, the first pass effect will reduce the level of T-2 toxin in blood indicating that liver is the main metabolic site of T-2 toxin in vivo. In this review, updated researches on the hepatotoxicity of T-2 toxin were summarized. The metabolic characteristic of T-2 toxin in vivo was introduced. The main hepatotoxic mechanisms of T-2 toxin are oxidative stress, mitochondrial damage, deoxyribonucleic acid (DNA) methylation, autophagy and apoptosis. The remission of the hepatotoxicity induced by T-2 toxin was also studied in this review followed by new findings on the detoxification of hepatotoxicity induced by T-2 toxin. The review aimed to offer a comprehensive view and proposes new perspectives in the field of hepatotoxicity induced by T-2 toxin.


Subject(s)
Chemical and Drug Induced Liver Injury , Fusarium , T-2 Toxin , Animals , Humans , T-2 Toxin/toxicity , Fusarium/metabolism
8.
BMC Health Serv Res ; 23(1): 514, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37211610

ABSTRACT

BACKGROUND AND AIM: The traditional method of taking Chinese Medicine involves creating a decoction by cooking medicinal Chinese herbs. However, this method has become less popular, being replaced by the more convenient method of consuming concentrated Chinese herbal extracts, which creates challenges related to the complexity of stacking multiple formulas. METHODS: We developed the Chinese Intelligence Prescription System (CIPS) to simplify the prescription process. In this study, we used data from our institutions pharmacy to calculate the number of reductions, average dispensing time, and resulting cost savings. RESULTS: The mean number of prescriptions was reduced from 8.19 ± 3.65 to 7.37 ± 3.34 ([Formula: see text]). The reduction in the number of prescriptions directly resulted in decreased dispensing time, reducing it from 1.79 ± 0.25 to 1.63 ± 0.66 min ([Formula: see text]). The reduced dispensing time totaled 3.75 h per month per pharmacist, equivalent to an annual labor cost savings of $15,488 NTD per pharmacist. In addition, drug loss was reduced during the prescription process, with a mean savings of $4,517 NTD per year. The combined savings adds up to a not insignificant $20,005 NTD per year per pharmacist. When taking all TCM clinics/hospitals in Taiwan into account, the total annual savings would be $77 million NTD. CONCLUSION: CIPS assists clinicians and pharmacists to formulate precise prescriptions in a clinical setting to simplify the dispensing process while reducing medical resource waste and labor costs.


Subject(s)
Pharmaceutical Services , Pharmacy , Humans , Drug Costs , Prescriptions , Pharmacists , Drug Prescriptions , Medicine, Chinese Traditional
9.
J Chromatogr A ; 1701: 464063, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37201431

ABSTRACT

Gasoline is one of the most encountered ignitable liquids (IL) in fire debris analysis. The extraction of gasoline from fire debris samples presents challenges due to the complicated nature of multicomponent mixtures. This research work proposed a novel carbon nanotube-assisted solid phase microextraction (CNT-SPME) fiber coupled with gas chromatography and mass spectrometry (GC/MS) to determine gasoline residues for fire debris analysis. The CNT-SPME fiber was prepared by a sequential coating of polydopamine, epoxy, and CNTs on a stainless-steel wire. The extraction capabilities of the CNT-SPME fiber for gasoline and its major aromatic groups (xylenes, alkylbenzenes, indanes, and naphthalenes) from neat and spiked samples were promising, with linear dynamic ranges of 0.4-12.5 and 3.1-12.5 µg 20-mL-1 headspace vial, respectively. The average relative standard deviations and accuracies for all concentration ranges in this work were lower than 15%. The relative recovery of the CNT-SPME fiber for all aromatic groups ranged from 28 ± 3% to 59 ± 2%. Additionally, the CNT-SPME fiber showed a higher selectivity for the naphthalenes group in gasoline, as indicated by the experimental outcome using a pulsed thermal desorption process of the extracts. We envision the nanomaterial-based SPME offers promising opportunities for extracting and detecting other ILs to support fire investigation.


Subject(s)
Gasoline , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Solid Phase Microextraction/methods , Stainless Steel/chemistry , Naphthalenes
10.
Toxics ; 11(4)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37112621

ABSTRACT

T-2 toxin, the most toxic type A trichothecene mycotoxin, is produced by Fusarium, and is widely found in contaminated feed and stored grains. T-2 toxin is physicochemically stable and is challenging to eradicate from contaminated feed and cereal, resulting in food contamination that is inescapable and poses a major hazard to both human and animal health, according to the World Health Organization. Oxidative stress is the upstream cause of all pathogenic variables, and is the primary mechanism through which T-2 toxin causes poisoning. Nuclear factor E2-related factor 2 (Nrf2) also plays a crucial part in oxidative stress, iron metabolism and mitochondrial homeostasis. The major ideas and emerging trends in future study are comprehensively discussed in this review, along with research progress and the molecular mechanism of Nrf2's involvement in the toxicity impact brought on by T-2 toxin. This paper could provide a theoretical foundation for elucidating how Nrf2 reduces oxidative damage caused by T-2 toxin, and a theoretical reference for exploring target drugs to alleviate T-2 toxin toxicity with Nrf2 molecules.

11.
Commun Biol ; 6(1): 427, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072500

ABSTRACT

Ectopic ATP synthase complex (eATP synthase), located on cancer cell surface, has been reported to possess catalytic activity that facilitates the generation of ATP in the extracellular environment to establish a suitable microenvironment and to be a potential target for cancer therapy. However, the mechanism of intracellular ATP synthase complex transport remains unclear. Using a combination of spatial proteomics, interaction proteomics, and transcriptomics analyses, we find ATP synthase complex is first assembled in the mitochondria and subsequently delivered to the cell surface along the microtubule via the interplay of dynamin-related protein 1 (DRP1) and kinesin family member 5B (KIF5B). We further demonstrate that the mitochondrial membrane fuses to the plasma membrane in turn to anchor ATP syntheses on the cell surface using super-resolution imaging and real-time fusion assay in live cells. Our results provide a blueprint of eATP synthase trafficking and contribute to the understanding of the dynamics of tumor progression.


Subject(s)
Mitochondria , Neoplasms , Humans , Mitochondria/metabolism , Cell Membrane/metabolism , Mitochondrial Membranes/metabolism , Neoplasms/metabolism , Adenosine Triphosphate/metabolism , Tumor Microenvironment
12.
Food Chem Toxicol ; 175: 113730, 2023 May.
Article in English | MEDLINE | ID: mdl-36925038

ABSTRACT

Deoxynivalenol (DON) is the most common mycotoxin contaminant in food and feed. DON accumulation in food chain severely threatens human and animal health due to the toxic effects on the reproduction system. However, the underlying mechanism of DON on male reproductive dysfunction is still in debate and there is little information about whether DON triggers testicular ferroptosis. In this study, male C57BL/6 mice were divided into 4 groups and treated by oral gavage with 0, 0.5, 1.0, 2.0 mg/kg BW DON for 28 days. Firstly, we proved that male reproduction dysfunction was induced by DON through assessing testicular histopathology, serum testosterone level as well as blood-testis barrier integrity. Then, we verified ferroptosis occurred in DON-induced testicular dysfunction model through disrupting iron homeostasis, increasing lipid peroxidation and inhibiting system Xc-/Gpx4 axis. Notably, the present data showed DON reduced antioxidant capacity via blocking Nrf2 pathway to lead to the further weakness of ferroptosis resistance. Altogether, these results indicated that DON caused mice testicular ferroptosis associated with inhibiting Nrf2/System Xc-/GPx4 axis, which provided that maintaining testicular iron homeostasis and activating Nrf2 pathway may be a potential target for alleviating testicular toxicity of DON in the future.


Subject(s)
Ferroptosis , Humans , Male , Mice , Animals , NF-E2-Related Factor 2/metabolism , Mice, Inbred C57BL , Iron/metabolism
13.
Am J Clin Pathol ; 159(5): 474-483, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36857745

ABSTRACT

OBJECTIVES: The clinical presentations of essential thrombocythemia (ET) may be quite similar to early/prefibrotic primary myelofibrosis (pre-PMF), especially in pre-PMF presenting with thrombocytosis (pre-PMF-T), but may be associated with a different outcome. It is very important to distinguish these two entities. The aim of this study was to address the clinical and prognostic relevance of distinguishing pre-PMF-T from ET. METHODS: All patients, including 258 with ET and 105 with pre-PMF-T, received JAK2V617F, MPL (exon 10), and CALR (exon 9) mutation analysis and allele burden measurement for JAK2V617F and CALR mutants. RESULTS: Patients with pre-PMF-T had an older age and higher leukocyte and platelet counts but lower hemoglobin levels than patients with ET. Patients with pre-PMF-T had a shorter overall, leukemia-free, and thrombosis-free survival compared with patients with ET. Patients with ET had a higher rate of cerebral ischemic stroke, whereas patients with pre-PMF-T tended to have splanchnic vein thrombosis. The frequencies of JAK2V617F, CALR, and MPL mutations and CALR allele burden were no different, but JAK2V617F allele burden was significantly higher in pre-PMF-T. Patients with pre-PMF-T with the JAK2V617F mutation had an inferior overall survival and thrombosis-free survival, whereas the status of driver gene mutations did not influence the outcomes of patients with ET. CONCLUSIONS: ET and pre-PMF-T were two distinct disease entities and exhibited different clinical phenotype, genotype, and outcomes.


Subject(s)
Primary Myelofibrosis , Thrombocythemia, Essential , Humans , Thrombocythemia, Essential/genetics , Taiwan , Mutation , Platelet Count , Janus Kinase 2/genetics , Calreticulin/genetics
14.
Ecotoxicol Environ Saf ; 253: 114695, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36857919

ABSTRACT

T-2 toxin is an unavoidable food and feed contaminant that seriously threatens human and animal health. Exposure to T-2 toxin can cause testosterone synthesis disorder in male animals, but the molecular mechanism is still not completely clear. The MAPK pathway participates in the regulation of testosterone synthesis by Leydig cells, but it is unclear whether the MAPK pathway participates in T-2 toxin-induced testosterone synthesis disorders. In this research, testosterone synthesis capacity, testosterone synthase expression and MAPK pathway activation were examined in male mice and TM3 cells exposed to T-2 toxin. The results showed that T-2 toxin exposure decreased testicular volume and caused pathological changes in the microstructure and ultrastructure of testicular Leydig cells. T-2 toxin exposure also decreased testicular testosterone content and the protein expression of testosterone synthase. In vitro, T-2 toxin inhibited cell viability and decreased the expression of testosterone synthase in TM3 cells, and it decreased the testosterone contents in cell culture supernatants. Moreover, T-2 toxin activated the MAPK pathway by increasing the expression of p38, JNK and ERK as well as the expression of p-p38, p-JNK and p-ERK in testis and TM3 cells. The p38 molecular inhibitor (SB203580) significantly alleviated the T-2 toxin-induced decrease in testosterone synthase expression in TM3 cells and the T-2 toxin-induced reduction in testosterone content in TM3 cell culture supernatants. In summary, p38 mediates T-2 toxin-induced Leydig cell testosterone synthesis disorder.


Subject(s)
Leydig Cells , T-2 Toxin , Male , Mice , Humans , Animals , Leydig Cells/metabolism , T-2 Toxin/toxicity , Testosterone/metabolism , Testis/metabolism , Cells, Cultured
15.
Microbiol Spectr ; : e0315922, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36809044

ABSTRACT

Thermophilic group II intron is one type of retrotransposon composed of intron RNA and intron-encoded protein (IEP), which can be utilized in gene targeting by harnessing their novel ribozyme-based DNA integration mechanism termed "retrohoming." It is mediated by a ribonucleoprotein (RNP) complex that contains the excised intron lariat RNA and an IEP with reverse transcriptase (RT) activity. The RNP recognizes targeting sites by exon-binding sequences 2 (EBS2)/intron-binding sequences 2 (IBS2), EBS1/IBS1, and EBS3/IBS3 bases pairing. Previously, we developed the TeI3c/4c intron as a thermophilic gene targeting system-Thermotargetron (TMT). However, we found that the targeting efficiency of TMT varies significantly at different targeting sites, which leads to a relatively low success rate. To further improve the success rate and gene-targeting efficiency of TMT, we constructed a Random Gene-targeting Plasmids Pool (RGPP) to analyze the sequence recognition preference of TMT. A new base pairing, located at the -8 site between EBS2/IBS2 and EBS1/IBS1 (named EBS2b-IBS2b), increased the success rate (2.45- to 5.07-fold) and significantly improved gene-targeting efficiency of TMT. A computer algorithm (TMT 1.0), based on the newly discovered sequence recognition roles, was also developed to facilitate the design of TMT gene-targeting primers. The present work could essentially expand the practicalities of TMT in the genome engineering of heat-tolerance mesophilic and thermophilic bacteria. IMPORTANCE The randomized base pairing in the interval of IBS2 and IBS1 of Tel3c/4c intron (-8 and -7 sites) in Thermotargetron (TMT) results in a low success rate and gene-targeting efficiency in bacteria. In the present work, we constructed a randomized gene-targeting plasmids pool (RGPP) to study whether there is a base preference in target sequences. Among all the successful "retrohoming" targets, we found that a new EBS2b-IBS2b base paring (A-8/T-8) significantly increased TMT's gene-targeting efficiency, and the concept is also applicable to other gene targets in redesigned gene-targeting plasmids pool in E. coli. The improved TMT is a promising tool for the genetic engineering of bacteria and could promote metabolic engineering and synthetic biology research in valuable microbes that recalcitrance for genetic manipulation.

16.
Childs Nerv Syst ; 39(6): 1529-1536, 2023 06.
Article in English | MEDLINE | ID: mdl-36821007

ABSTRACT

PURPOSE: Pediatric diffuse malignant glioma located in the brainstem was officially named "diffuse midline glioma" (DMG) by the World Health Organization in 2016. For this disease, radical surgery is not beneficial, and the only major treatment strategy is radiotherapy. However, the dose limitations to brainstem tissue mean that treatment by radiotherapy can only control and not eradicate the tumors, and there is no effective treatment for recurrence, resulting in short overall survival of 6-12 months. This paper reports our experience with boron neutron capture therapy (BNCT), a new treatment process, and its efficacy in treating children with recurrent DMG. METHODS: From September 2019 to July 2022, we treated 6 children affected by recurrent DMG. With the collaboration of Taipei Veteran General Hospital (TVGH) and National Tsing-Hua University (NTHU), each patient received two sessions of BNCT within 1 month. RESULTS: Among the six patients, three showed partial response and the rest had stable disease after the treatment. The overall survival and recurrence-free survival duration after treatment were 6.39 and 4.35 months, respectively. None of the patients developed severe side effects, and only one patient developed brain necrosis, which was most likely resulted from previous hypofractionated radiotherapy received. CONCLUSION: BNCT elicited sufficient tumor response with low normal tissue toxicity; it may benefit vulnerable pediatric patients with DMG.


Subject(s)
Boron Neutron Capture Therapy , Brain Neoplasms , Glioma , Humans , Child , Brain Neoplasms/radiotherapy , Boron Neutron Capture Therapy/adverse effects , Boron Neutron Capture Therapy/methods , Glioma/radiotherapy , Treatment Outcome , Neoplasm Recurrence, Local/pathology
17.
Am J Physiol Heart Circ Physiol ; 324(1): H33-H46, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36426884

ABSTRACT

Even in the 21st century, female participants continue to be underrepresented in human physiology research. This underrepresentation is attributable in part to the perception that the inclusion of females is more time consuming, less convenient, and more expensive relative to males because of the need to account for the menstrual cycle in cardiovascular study designs. Accounting for menstrual cycle-induced fluctuations in gonadal hormones is important, given established roles in governing vascular function and evidence that failure to consider gonadal hormone fluctuations can result in misinterpretations of biomarkers of cardiovascular disease. Thus, for cardiovascular researchers, the inclusion of females in research studies implies a necessity to predict, quantify, and/or track indexes of menstrual cycle-induced changes in hormones. It is here that methodologies are lacking. Gold standard measurement requires venous blood samples, but this technique is invasive and can become both expensive and technically preclusive when serial measurements are required. To this end, saliva-derived measures of gonadal hormones provide a means of simple, noninvasive hormone tracking. To investigate the feasibility of this technique as a means of facilitating research designs that take the menstrual cycle into account, the purpose of this review was to examine literature comparing salivary and blood concentrations of the primary gonadal hormones that fluctuate across the menstrual cycle: estradiol and progesterone. The data indicate that there appear to be valid and promising applications of salivary gonadal hormone monitoring, which may aid in the inclusion of female participants in cardiovascular research studies.


Subject(s)
Menstrual Cycle , Progesterone , Male , Humans , Female , Menstrual Cycle/physiology , Estradiol , Saliva
18.
Nutrients ; 14(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36558426

ABSTRACT

Iron is an important metal element involved in the regulation of male reproductive functions and has dual effects on testicular tissue. A moderate iron content is necessary to maintain testosterone synthesis and spermatogenesis. Iron overload can lead to male reproductive dysfunction by triggering testicular oxidative stress, lipid peroxidation, and even testicular ferroptosis. Ferroptosis is an iron-dependent form of cell death that is characterized by iron overload, lipid peroxidation, mitochondrial damage, and glutathione peroxidase depletion. This review summarizes the regulatory mechanism of ferroptosis and the research progress on testicular ferroptosis caused by endogenous and exogenous toxicants. The purpose of the present review is to provide a theoretical basis for the relationship between ferroptosis and male reproductive function. Some toxic substances or danger signals can cause male reproductive dysfunction by inducing testicular ferroptosis. It is crucial to deeply explore the testicular ferroptosis mechanism, which will help further elucidate the molecular mechanism of male reproductive dysfunction. It is worth noting that ferroptosis does not exist alone but rather coexists with other forms of cell death (such as apoptosis, necrosis, and autophagic death). Alleviating ferroptosis alone may not completely reverse male reproductive dysfunction caused by various risk factors.


Subject(s)
Ferroptosis , Iron Overload , Male , Humans , Reactive Oxygen Species/metabolism , Apoptosis , Iron/metabolism , Iron Overload/metabolism , Lipid Peroxidation
19.
Molecules ; 27(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35745070

ABSTRACT

Our previous findings have shown that the chlorophyllides composites have anticancer activities to breast cancer cell lines (MCF-7 and MDA-MB-231). In the present study, microarray gene expression profiling was utilized to investigate the chlorophyllides anticancer mechanism on the breast cancer cells lines. Results showed that chlorophyllides composites induced upregulation of 43 and 56 differentially expressed genes (DEG) in MCF-7 and MDA-MB-231 cells, respectively. In both cell lines, chlorophyllides composites modulated the expression of annexin A4 (ANXA4), chemokine C-C motif receptor 1 (CCR1), stromal interaction molecule 2 (STIM2), ethanolamine kinase 1 (ETNK1) and member of RAS oncogene family (RAP2B). Further, the KEGG annotation revealed that chlorophyllides composites modulated DEGs that are associated with the endocrine system in MCF-7 cells and with the nervous system in MDA-MB-231 cells, respectively. The expression levels of 9 genes were validated by quantitative reverse transcription PCR (RT-qPCR). The expression of CCR1, STIM2, ETNK1, MAGl1 and TOP2A were upregulated in both chlorophyllides composites treated-MCF-7 and MDA-MB-231 cells. The different expression of NLRC5, SLC7A7 and PKN1 provided valuable information for future investigation and development of novel cancer therapy.


Subject(s)
Breast Neoplasms , Chlorophyllides , Amino Acid Transport System y+L , Breast , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Early Detection of Cancer , Female , Humans , Intracellular Signaling Peptides and Proteins , MCF-7 Cells , rap GTP-Binding Proteins
20.
J Cardiothorac Surg ; 17(1): 120, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35581657

ABSTRACT

BACKGROUND: Pulmonary lymphoepithelioma-like carcinoma (LELC) is a rare type of non-small cell lung cancer, which mostly occurred in non-smoking Asian populations. The prognosis of this tumor is better than other lung cancers. Polymyositis, a kind of idiopathic inflammatory myopathies, may negatively affect the prognosis of patients with lung cancer as a paraneoplastic syndrome (PNPS). LELC is seldomly accompanied by PNPS, thus the treatment strategy and prognosis should be discussed. CASE PRESENTATION: We report a 49-year-old female patient who was hospitalized for "symmetric limb weakness and pain for more than 2 months". Glucocorticoid-based anti-inflammatory therapy had been performed for over 3 weeks before the patient was hospitalized, however, in vain. The result of serum autoimmune antibody showed Anti-nRNP/Sm ( +). The serum level of myoglobin, lactate dehydrogenase and creatine kinase elevated significantly. An electromyogram revealed peripheral nerves injury and myogenic damages. Imaging showed a mass in the posterior basal segment of the left lung. A percutaneous transthoracic needle biopsy was performed and the pathological result was LELC. The patient was diagnosed with pulmonary LELC accompanied by polymyositis. Positron emission tomography-computed tomography (PET-CT) showed only ipsilateral hilar and mediastinal lymph nodes metastasis. Video-assisted thoracoscopic left lower lobectomy and systematic mediastinal lymphadenectomy were performed. The postoperative pathological stage was T2N2M0, IIIA (UICC 8th), and the patient received adjuvant chemotherapy and subsequent radiotherapy. The patient was followed up for 5 months with no recurrence of tumor and the limb weakness and pain were relieved apparently after the successful comprehensive treatment of her primary tumor. CONCLUSION: Pulmonary LELC is a rare subtype of non-small cell lung cancer seldomly accompanied by PNPS. Though polymyositis is associated with lung cancer, it is easy to ignore this relationship when a patient is diagnosed with LELC in the clinic. Surgery based comprehensive treatment of primary tumor can lead to a prospective prognosis in pulmonary LELC patients with PNPS. And successful treatment of pulmonary LELC can also improve symptoms of PNPS.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Paraneoplastic Syndromes , Polymyositis , Carcinoma, Non-Small-Cell Lung/complications , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/pathology , Female , Humans , Lung/pathology , Lung Neoplasms/complications , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Middle Aged , Pain , Paraneoplastic Syndromes/diagnosis , Paraneoplastic Syndromes/etiology , Polymyositis/complications , Polymyositis/diagnosis , Polymyositis/pathology , Positron Emission Tomography Computed Tomography , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...