Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36903603

ABSTRACT

Hepatocellular carcinoma is the third most common cause of cancer-related death according to the International Agency for Research on Cancer. Dihydroartemisinin (DHA), an antimalarial drug, has been reported to exhibit anticancer activity but with a short half-life. We synthesized a series of bile acid-dihydroartemisinin hybrids to improve its stability and anticancer activity and demonstrated that an ursodeoxycholic-DHA (UDC-DHA) hybrid was 10-fold more potent than DHA against HepG2 hepatocellular carcinoma cells. The objectives of this study were to evaluate the anticancer activity and investigate the molecular mechanisms of UDCMe-Z-DHA, a hybrid of ursodeoxycholic acid methyl ester and DHA via a triazole linkage. We found that UDCMe-Z-DHA was even more potent than UDC-DHA in HepG2 cells with IC50 of 1 µM. Time course experiments and stability in medium determined by cell viability assay as well as HPLC-MS/MS analysis revealed that UDCMe-Z-DHA was more stable than DHA, which in part accounted for the increased anticancer activity. Mechanistic studies revealed that UDCMe-Z-DHA caused G0/G1 arrest and induced reactive oxygen species (ROS), mitochondrial membrane potential loss and autophagy, which may in turn lead to apoptosis. Compared to DHA, UDCMe-Z-DHA displayed much lower cytotoxicity toward normal cells. Thus, UDCMe-Z-DHA may be a potential drug candidate for hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Ursodeoxycholic Acid , Liver Neoplasms/pathology , Tandem Mass Spectrometry , Apoptosis , Artemether , Cell Line, Tumor
2.
Sensors (Basel) ; 21(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800883

ABSTRACT

In order to minimize the impacts of climate change on various crops, farmers must learn to monitor environmental conditions accurately and effectively, especially for plants that are particularly sensitive to the weather. On-site sensors and weather stations are two common methods for collecting data and observing weather conditions. Although sensors are capable of collecting accurate weather information on-site, they can be costly and time-consuming to install and maintain. An alternative is to use the online weather stations, which are usually government-owned and free to the public; however, their accuracy is questionable because they are frequently located far from the farmers' greenhouses. Therefore, we compared the accuracy of kriging estimators using the weather station data (collected by the Central Weather Bureau) to local sensors located in the greenhouse. The spatio-temporal kriging method was used to interpolate temperature data. The real value at the central point of the greenhouse was used for comparison. According to our results, the accuracy of the weather station estimator was slightly lower than that of the local sensor estimator. Farmers can obtain accurate estimators of environmental data by using on-site sensors; however, if they are unavailable, using a nearby weather station estimator is also acceptable.

3.
Front Pharmacol ; 11: 599067, 2020.
Article in English | MEDLINE | ID: mdl-33343369

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy in adults and accounts for 85-90% of all primary liver cancer. Based on the estimation by the International Agency for Research on Cancer in 2018, liver cancer is the fourth leading cause of cancer death globally. Dihydroartemisinin (DHA), the main active metabolite of artemisinin derivatives, is a well-known drug for the treatment of malaria. Previous studies have demonstrated that DHA exhibits antitumor effects toward a variety of human cancers and has a potential for repurposing as an anticancer drug. However, its short half-life is a concern and may limit the application in cancer therapy. We have reported that UDC-DHA, a hybrid of bile acid ursodeoxycholic acid (UDCA) and DHA, is ∼12 times more potent than DHA against a HCC cell line HepG2. In this study, we found that UDC-DHA was also effective against another HCC cell line Huh-7 with an IC50 of 2.16 µM, which was 18.5-fold better than DHA with an IC50 of 39.96 µM. UDC-DHA was much more potent than the combination of DHA and UDCA at 1:1 molar ratio, suggesting that the covalent linkage rather than a synergism between UDCA and DHA is critical for enhancing DHA potency in HepG2 cells. Importantly, UDC-DHA was much less toxic to normal cells than DHA. UDC-DHA induced G0/G1 arrest and apoptosis. Both DHA and UDC-DHA significantly elevated cellular reactive oxygen species generation but with different magnitude and timing in HepG2 cells; whereas only DHA but not UDC-DHA induced reactive oxygen species in Huh-7 cells. Depolarization of mitochondrial membrane potential was detected in both HepG2 and Huh-7 cells and may contribute to the anticancer effect of DHA and UDC-DHA. Furthermore, UDC-DHA was much more stable than DHA based on activity assays and high performance liquid chromatography-MS/MS analysis. In conclusion, UDC-DHA and DHA may exert anticancer actions via similar mechanisms but a much lower concentration of UDC-DHA was required, which could be attributed to a better stability of UDC-DHA. Thus, UDC-DHA could be a better drug candidate than DHA against HCC and further investigation is warranted.

4.
ChemMedChem ; 14(7): 779-787, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30724466

ABSTRACT

A series of hybrid compounds based on natural products-bile acids and dihydroartemisinin-were prepared by different synthetic methodologies and investigated for their in vitro biological activity against HL-60 leukemia and HepG2 hepatocellular carcinoma cell lines. Most of these hybrids presented significantly improved antiproliferative activities with respect to dihydroartemisinin and the parent bile acid. The two most potent hybrids of the series exhibited a 10.5- and 15.4-fold increase in cytotoxic activity respect to dihydroartemisinin alone in HL-60 and HepG2 cells, respectively. Strong evidence that an ursodeoxycholic acid hybrid induced apoptosis was obtained by flow cytometric analysis and western blot analysis.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Artemisinins/chemistry , Artemisinins/pharmacology , Bile Acids and Salts/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , HL-60 Cells , Hep G2 Cells , Humans , Inhibitory Concentration 50
SELECTION OF CITATIONS
SEARCH DETAIL
...