Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharm Sin B ; 12(10): 3972-3985, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36213530

ABSTRACT

Due to the overwhelming percentage of poorly water-soluble drugs, pharmaceutical industry is in urgent need of efficient approaches for solubilization and permeability improvement. Salts consisting of lipophilic fatty acid anions and hydrophilic choline cations are found to be surface active and able to form ionic co-aggregates (ICAs) in water. Choline oleate-based ICAs significantly enhance oral absorption of paclitaxel (PTX) as compared with cremophor EL-based micelles (MCs). Aggregation-caused quenching probes enable tracking of intact ICAs in in vivo transport and cellular interaction. Prolonged intestinal retention of ICAs than MCs implies stronger solubilizing capability in vivo. Ex vivo imaging of major organs and intestinal tracts suggests transepithelial transport of intact ICAs. Cellular studies support the enhanced absorption of PTX and transmembrane transport of intact ICAs. In conclusion, ICAs, consisting of lipophilic ions and hydrophilic counter-ions, are of great potential in delivery of poorly water-soluble drugs by enhancing solubility and permeability.

2.
Int J Pharm ; 588: 119737, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32758595

ABSTRACT

Nanosuspensions have received much attention in enhanced transdermal delivery. However, the corresponding mechanisms have not been clarified. In particular, whether nanosuspensions can directly penetrate across the stratum corneum (SC) and what is the transdermal route for the enhanced penetration. Therefore, curcumin (CUR) was adopted in this study as a model drug, while an aggregation-caused quenching (ACQ) probe was physically embedded in CUR nanosuspensions, i.e., the CUR hybrid nanosuspensions (CUR-HNSs), for bioimaging. The ACQ properties enable identification of intact CUR-HNSs. The co-localization of particle and CUR signals was exploited to outline the translocation profiles of intact nanosuspensions as well as the cargoes. Three sizes of CUR-HNSs are prepared, which are spherical and amorphous. CUR is poor in transdermal transport even in propylene glycol solution, which was enhanced by nanosuspensions. Although 400 nm CUR-HNSs present higher steady state flux than 140 nm and 730 nm ones, the cumulative amount of permeated CUR is yet less than 2% of the applied dose at 12 h. Co-localization of CUR and ACQ probe signals indicates that CUR-HNSs can infiltrate into the SC layer and accumulate in the hair follicles. The intact CUR-HNSs cannot enter into the skin. On the contrary, CUR molecules diffuse into the whole skin tissues following dissolution of CUR-HNSs in the SC and the hair follicles. In conclusion, nanosuspensions are advantageous for transdermal delivery of poorly permeable drugs by filtrate into the SC and accumulate in hair follicles.


Subject(s)
Curcumin , Nanoparticles , Administration, Cutaneous , Curcumin/administration & dosage , Drug Carriers , Particle Size
3.
Drug Discov Today ; 25(5): 901-908, 2020 05.
Article in English | MEDLINE | ID: mdl-31593645

ABSTRACT

Beyond their traditional use as green solvents, new applications have become available for ionic liquids (ILs) in drug delivery. Their flexible tunability enables task-specific optimization of ILs at molecular level. Thus, ILs have been exploited to improve the solubility and permeability of drugs and relieve the polymorphic problems associated with crystalline active pharmaceutical ingredients (APIs). Controlled preparation of drug nanocarriers are also achieved by using ILs either as media or as functional agents. Here, we highlight the importance and advantages of ILs in pharmaceutics and look towards the future of IL-based drug delivery.


Subject(s)
Ionic Liquids/chemistry , Pharmaceutical Preparations/chemistry , Solvents/chemistry , Animals , Drug Carriers/chemistry , Drug Delivery Systems/methods , Humans , Nanoparticles/chemistry , Permeability/drug effects , Solubility/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...