Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Beijing Da Xue Xue Bao Yi Xue Ban ; 55(6): 982-992, 2023 Dec 18.
Article in Chinese | MEDLINE | ID: mdl-38101778

ABSTRACT

OBJECTIVE: To study the correlation between dyslipidemia and rheumatoid arthritis associa-ted interstitial lung disease (RA-ILD) by retrospective analysis of the clinical data. METHODS: The clinical data of patients with rheumatoid arthritis (RA), who were hospitalized in the Department of Rheumatism and Immunology of Peking University Shenzhen Hospital from January 2015 to July 2020 and fulfilled the criteria of the 2010 Rheumatoid Arthritis Classification Criteria established by American College of Rheumatology/European League Against Rheumatism collaborative initiative, were collected and analyzed. RESULTS: There were 737 RA patients included, of whom 282(38.26%)were with interstitial lung disease (ILD). The median time from the onset of the first RA-related clinical symptoms to the onset of ILD was 13 years (95%CI 11.33-14.67). By multivariate Logistic regression analysis, we found that low-density lipoprotein cholesterol (LDL-C) was an independent risk factor for RA-ILD (OR 1.452, 95%CI 1.099-1.918, P=0.009), whereas high-density lipoprotein cholesterol (HDL-C) was a protective factor for RA-ILD (OR 0.056, 95%CI 0.025-0.125, P < 0.001). The RA patients with high LDL-C or low HDL-C had higher incidence of ILD than that of the RA patients with normal LDL-C or HDL-C(57.45% vs. 36.96%, P < 0.001; 47.33% vs. 33.81%, P < 0.001, respectively). The median time of ILD onset in the RA patients with low HDL-C was shorter than that of the RA patients with normal HDL-C [10.0(95%CI 9.33-10.67)years vs.17.0 (95%CI 14.58-19.42) years, P < 0.001]. HDL-C level was negatively correlated with disease activity. Among the RA-ILD patients, the patients with low HDL-C had higher percentage of usual interstitial pneumonia (UIP) then that of the patients with normal HDL-C (60.00% vs. 53.29%, P=0.002). The RA-ILD patients with high LDL-C had higher incidence rate of decrease in forced vital capacity (FVC) than that of the RA-ILD patients with normal LDL-C (50.00% vs. 21.52%, P=0.015). The RA-ILD patients with low HDL-C had higher incidence rate of decrease in FVC (26.92% vs. 16.18%, P=0.003) and carbon monoxide diffusion (80.76% vs. 50.00%, P=0.010) than that of RA-ILD patients with normal HDL-C. CONCLUSION: LDL-C was possibly a potential independent risk factor for RA-ILD. HDL-C was possibly a potential protective factor for RA-ILD. HDL-C level was negatively correlated with disease activity of RA. The median time of ILD onset in the RA patients with low HDL-C was significantly shorter than that of the RA patients with normal HDL-C.


Subject(s)
Arthritis, Rheumatoid , Dyslipidemias , Lung Diseases, Interstitial , Humans , Retrospective Studies , Cholesterol, LDL , Arthritis, Rheumatoid/complications , Lung Diseases, Interstitial/complications , Dyslipidemias/complications , Dyslipidemias/epidemiology
2.
Epigenetics ; 18(1): 2195305, 2023 12.
Article in English | MEDLINE | ID: mdl-36994860

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease with an unclear pathogenesis. This study aimed to elucidate the function and potential mechanisms of TUG1 in IPF progression. Cell viability and migration were detected by CCK-8 and transwell assays. Autophagy, fibrosis, or EMT-related proteins were measured by Western blotting. Pro-inflammatory cytokine levels were assessed by ELISA kits. The subcellular localization of TUG1 was observed by FISH assay. RIP assay detected the interaction between TUG1 and CDC27. TUG1 and CDC27 was up-regulated in TGF-ß1-induced RLE-6TN cells. TUG1 depletion suppressed pulmonary fibrosis via attenuating inflammation, EMT, inducing autophagy and inactivating PI3K/Akt/mTOR pathway in vitro and in vivo. TUG1 knockdown prevented CDC27 expression. TUG1 silencing ameliorated pulmonary fibrosis by reducing CDC27 expression and inhibiting PI3K/Akt/mTOR pathway.


Subject(s)
Pulmonary Fibrosis , RNA, Long Noncoding , Apc3 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Apc3 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , DNA Methylation , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Animals
3.
PLoS One ; 7(7): e42124, 2012.
Article in English | MEDLINE | ID: mdl-22848728

ABSTRACT

Citrus bacterial canker caused by Xanthomonas axonopodis pv. citri is a devastating disease resulting in significant crop losses in various citrus cultivars worldwide. A biocontrol agent has not been recommended for this disease. To explore the potential of bacilli native to Taiwan to control this disease, Bacillus species with a broad spectrum of antagonistic activity against various phytopathogens were isolated from plant potting mixes, organic compost and the rhizosphere soil. Seven strains TKS1-1, OF3-16, SP4-17, HSP1, WG6-14, TLB7-7, and WP8-12 showing superior antagonistic activity were chosen for biopesticide development. The genetic identity based on 16S rDNA sequences indicated that all seven native strains were close relatives of the B. subtilis group and appeared to be discrete from the B. cereus group. DNA polymorphisms in strains WG6-14, SP4-17, TKS1-1, and WP8-12, as revealed by repetitive sequence-based PCR with the BOXA1R primers were similar to each other, but different from those of the respective Bacillus type strains. However, molecular typing of the strains using either tDNA-intergenic spacer regions or 16S-23S intergenic transcribed spacer regions was unable to differentiate the strains at the species level. Strains TKS1-1 and WG6-14 attenuated symptom development of citrus bacterial canker, which was found to be correlated with a reduction in colonization and biofilm formation by X. axonopodis pv. citri on leaf surfaces. The application of a Bacillus strain TKS1-1 endospore formulation to the leaf surfaces of citrus reduced the incidence of citrus bacterial canker and could prevent development of the disease.


Subject(s)
Bacillus/physiology , Biofilms/growth & development , Citrus/microbiology , DNA, Bacterial/genetics , Plant Diseases/microbiology , Polymorphism, Genetic , Xanthomonas axonopodis/physiology , Bacillus/classification , Bacillus/genetics , Biological Control Agents , Cluster Analysis , DNA, Intergenic/genetics , Molecular Sequence Data , Phylogeny , Plant Leaves/microbiology , RNA, Ribosomal, 16S/genetics , Repetitive Sequences, Nucleic Acid/genetics , Sequence Analysis, RNA , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...