Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 447
Filter
1.
Sci Rep ; 14(1): 15389, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965256

ABSTRACT

The objective was to explore the efficacy of single-port laparoscopic percutaneous extraperitoneal closure using double-modified hernia needles with hydrodissection (SLPEC group) and two-port laparoscopic percutaneous extraperitoneal closure (TLPEC group) for the treatment of giant indirect inguinal hernias in children. We performed a retrospective review of all children with giant indirect inguinal hernias (inner ring orifice diameter ≥ 1.5 cm) who underwent laparoscopic high ligation of the hernia sac at FuJian Children's Hospital from January 2019 to December 2021. We collected data from the medical records of all the children and analysed their clinical characteristics and operation-related and follow-up information. Overall, this study included a cohort of 219 patients with isolated giant inguinal hernias who had complete clinical data and who had undergone laparoscopic high ligation of the hernia sac at our centre. All procedures were successfully performed for the 106 patients who underwent SLPEC and for the 113 patients who underwent TLPEC at our centre. There were no statistically significant differences in patient age, sex, body weight, follow-up time or the side of inguinal hernia between the SLPEC group and the TLPEC group (P = 0.123, 0.613, 0.121, 0.076 and 0.081, respectively). However, there were significant differences in the bleeding volume, visual analogue scale (VAS) score, and postoperative activity time between the two groups (P ≤ 0.001). The operation times in the TLPEC group were significantly longer than those in the SLPEC group (P = 0.048), but there were no significant differences in hospital length of stay or hospitalization costs between the two groups (P = 0.244 and 0.073, respectively). Incision scars were found in 2 patients in the SLPEC group and 9 patients in the TLPEC group, and there was a significant difference between the two groups (P = 0.04). However, the incidence of ipsilateral hernia recurrence, surgical site infection, suture-knot reactions and chronic inguinodynia did not significantly differ between the two groups (P = 0.332, 0.301, 0.332 and 0.599, respectively). Postoperative hydrocele occurred in only 1 male child in the SLPEC group and in no male children in the TLPEC group, and there was no difference between the two groups (P = 0.310). In this study, there were no cases of testicular atrophy or iatrogenic ascent of the testis. Compared with the TLPEC group, the SLPEC group had the advantages of a concealed incision, light scarring, minimal invasiveness, a reduced operation time, minimal bleeding, mild pain and rapid recovery. In conclusion, SLPEC using double-modified hernia needles with hydrodissection and high ligation of the hernia sac is a safe, effective and minimally invasive surgery. The cosmetic results are impressive, and the follow-up results are promising.


Subject(s)
Hernia, Inguinal , Herniorrhaphy , Laparoscopy , Humans , Hernia, Inguinal/surgery , Male , Laparoscopy/methods , Female , Retrospective Studies , Child, Preschool , Child , Herniorrhaphy/methods , Herniorrhaphy/instrumentation , Needles , Infant , Treatment Outcome , Postoperative Complications/epidemiology , Postoperative Complications/etiology
3.
Vaccines (Basel) ; 12(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38932301

ABSTRACT

Group B Streptococcus (GBS) is a life-threatening opportunistic pathogen, particularly in pregnant women, infants, and the elderly. Currently, maternal vaccination is considered the most viable long-term option for preventing GBS mother-to-infant infection, and two polysaccharide conjugate vaccines utilizing CRM197 as a carrier protein have undergone clinical phase II trials. Surface immunogenic protein (Sip), present in all identified serotypes of GBS strains so far, is a protective surface protein of GBS. In this study, the type Ia capsular polysaccharide (CPS) of GBS was utilized as a model to develop candidate antigens for a polysaccharide conjugate vaccine by coupling it with the Sip of GBS and the traditional carrier protein CRM197. Serum analysis from immunized New Zealand rabbits and CD1 mice revealed that there was no significant difference in antibody titers between the Ia-Sip group and Ia-CRM197 group; however, both were significantly higher than those observed in the Ia polysaccharide group. Opsonophagocytosis and passive immune protection results using rabbit serum indicated no significant difference between the Ia-Sip and Ia-CRM197 groups, both outperforming the Ia polysaccharide group. Furthermore, serum from the Ia-Sip group had a cross-protective effect on multiple types of GBS strains. The challenge test results in CD1 mice demonstrated that the Ia-Sip group provided complete protection against lethal doses of bacteria and also showed cross-protection against type III strain. Our study demonstrates for the first time that Ia-Sip is immunogenic and provides serotype-independent protection in glycan conjugate vaccines, which also indicates Sip may serve as an excellent carrier protein for GBS glycan conjugate vaccines and provide cross-protection against multiple GBS strains.

4.
Front Immunol ; 15: 1380211, 2024.
Article in English | MEDLINE | ID: mdl-38898888

ABSTRACT

Background: Klebsiella pneumoniae is a common Gram-negative bacterium. Blood infection caused by K. pneumoniae is one of the most common causes of human sepsis, which seriously threatens the life of patients. The immune status of peripheral blood mononuclear cells (PBMCs) based on single-cell RNA sequencing (scRNA-seq) in acute stage and recovery stage of sepsis caused by K. pneumoniae bloodstream infection has not been studied. Methods: A total of 13 subjects were included in this study, 3 healthy controls, 7 patients with K. pneumoniae bloodstream infection in the acute stage (4 patients died), and 3 patients in the recovery stage. Peripheral blood of all patients was collected and PBMCs were isolated for scRNA-seq analysis. We studied the changes of PBMCs components, signaling pathways, differential genes, and cytokines in acute and recovery stages. Results: During K. pneumoniae acute infection we observed a decrease in the proportion of T cells, most probably due to apoptosis and the function of T cell subtypes was disorder. The proportion of monocytes increased in acute stage. Although genes related to their phagocytosis function were upregulated, their antigen presentation capacity-associated genes were downregulated. The expression of IL-1ß, IL-18, IFNGR1 and IFNGR2 genes was also increased in monocytes. The proportion of DCs was depleted during the acute stage and did not recover during sepsis recovery. DCs antigen presentation was weakened during the acute stage but recovered fast during the recovery stage. pDCs response to MCP-1 chemokine was weakened, they recovered it quickly during the recovery stage. B cells showed apoptosis both in the acute stage and recovery stage. Their response to complement was weakened, but their antigen presentation function was enhanced. The proportion of NK cells stable during all disease's stages, and the expression of IFN-γ gene was upregulated. Conclusion: The proportion of PBMCs and their immune functions undergo variations throughout the course of the disease, spanning from the acute stage to recovery. These findings provide new insights into the mechanism of PBMCs immune function during K. pneumoniae bloodstream infection sepsis and recovery and sets the basis for further understanding and treatment.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Leukocytes, Mononuclear , Sepsis , Humans , Klebsiella pneumoniae/immunology , Klebsiella Infections/immunology , Klebsiella Infections/blood , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Male , Female , Middle Aged , Sepsis/immunology , Sepsis/microbiology , Sepsis/blood , Sepsis/genetics , Aged , Single-Cell Analysis , Cytokines/blood , Bacteremia/immunology , Bacteremia/microbiology , Bacteremia/genetics , Sequence Analysis, RNA , Adult
5.
Bone Res ; 12(1): 32, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789434

ABSTRACT

Extracellular matrix (ECM) stiffening is a typical characteristic of cartilage aging, which is a quintessential feature of knee osteoarthritis (KOA). However, little is known about how ECM stiffening affects chondrocytes and other molecules downstream. This study mimicked the physiological and pathological stiffness of human cartilage using polydimethylsiloxane (PDMS) substrates. It demonstrated that epigenetic Parkin regulation by histone deacetylase 3 (HDAC3) represents a new mechanosensitive mechanism by which the stiffness matrix affected chondrocyte physiology. We found that ECM stiffening accelerated cultured chondrocyte senescence in vitro, while the stiffness ECM downregulated HDAC3, prompting Parkin acetylation to activate excessive mitophagy and accelerating chondrocyte senescence and osteoarthritis (OA) in mice. Contrarily, intra-articular injection with an HDAC3-expressing adeno-associated virus restored the young phenotype of the aged chondrocytes stimulated by ECM stiffening and alleviated OA in mice. The findings indicated that changes in the mechanical ECM properties initiated pathogenic mechanotransduction signals, promoted the Parkin acetylation and hyperactivated mitophagy, and damaged chondrocyte health. These results may provide new insights into chondrocyte regulation by the mechanical properties of ECM, suggesting that the modification of the physical ECM properties may be a potential OA treatment strategy.


Subject(s)
Cellular Senescence , Chondrocytes , Down-Regulation , Extracellular Matrix , Histone Deacetylases , Osteoarthritis , Animals , Chondrocytes/metabolism , Chondrocytes/pathology , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Extracellular Matrix/metabolism , Osteoarthritis/pathology , Humans , Mice , Cellular Senescence/drug effects , Mice, Inbred C57BL , Mitophagy/drug effects , Male , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Acetylation , Cells, Cultured
6.
J Exp Clin Cancer Res ; 43(1): 152, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38812060

ABSTRACT

BACKGROUND: Intrahepatic cholangiocarcinoma (ICCA) is a heterogeneous group of malignant tumors characterized by high recurrence rate and poor prognosis. Heterochromatin Protein 1α (HP1α) is one of the most important nonhistone chromosomal proteins involved in transcriptional silencing via heterochromatin formation and structural maintenance. The effect of HP1α on the progression of ICCA remained unclear. METHODS: The effect on the proliferation of ICCA was detected by experiments in two cell lines and two ICCA mouse models. The interaction between HP1α and Histone Deacetylase 1 (HDAC1) was determined using Electrospray Ionization Mass Spectrometry (ESI-MS) and the binding mechanism was studied using immunoprecipitation assays (co-IP). The target gene was screened out by RNA sequencing (RNA-seq). The occupation of DNA binding proteins and histone modifications were predicted by bioinformatic methods and evaluated by Cleavage Under Targets and Tagmentation (CUT & Tag) and Chromatin immunoprecipitation (ChIP). RESULTS: HP1α was upregulated in intrahepatic cholangiocarcinoma (ICCA) tissues and regulated the proliferation of ICCA cells by inhibiting the interferon pathway in a Signal Transducer and Activator of Transcription 1 (STAT1)-dependent manner. Mechanistically, STAT1 is transcriptionally regulated by the HP1α-HDAC1 complex directly and epigenetically via promoter binding and changes in different histone modifications, as validated by high-throughput sequencing. Broad-spectrum HDAC inhibitor (HDACi) activates the interferon pathway and inhibits the proliferation of ICCA cells by downregulating HP1α and targeting the heterodimer. Broad-spectrum HDACi plus interferon preparation regimen was found to improve the antiproliferative effects and delay ICCA development in vivo and in vitro, which took advantage of basal activation as well as direct activation of the interferon pathway. HP1α participates in mediating the cellular resistance to both agents. CONCLUSIONS: HP1α-HDAC1 complex influences interferon pathway activation by directly and epigenetically regulating STAT1 in transcriptional level. The broad-spectrum HDACi plus interferon preparation regimen inhibits ICCA development, providing feasible strategies for ICCA treatment. Targeting the HP1α-HDAC1-STAT1 axis is a possible strategy for treating ICCA, especially HP1α-positive cases.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Chromobox Protein Homolog 5 , Histone Deacetylase 1 , STAT1 Transcription Factor , Animals , Female , Humans , Male , Mice , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Cholangiocarcinoma/genetics , Chromobox Protein Homolog 5/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylase 1/metabolism , STAT1 Transcription Factor/metabolism
7.
Adv Sci (Weinh) ; 11(26): e2403227, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704731

ABSTRACT

To effectively treat osteoarthritis (OA), the existing inflammation must be reduced before the cartilage damage can be repaired; this cannot be achieved with a single type of extracellular vesicles (EVs). Here, a hydrogel complex with logic-gates function is proposed that can spatiotemporally controlled release two types of EVs: interleukin 10 (IL-10)+ EVs to promote M2 polarization of macrophage, and SRY-box transcription factor 9 (SOX9)+ EVs to increase cartilage matrix synthesis. Following dose-of-action screening, the dual EVs are loaded into a matrix metalloporoteinase 13 (MMP13)-sensitive self-assembled peptide hydrogel (KM13E) and polyethylene glycol diacrylate/gelatin methacryloyl-hydrogel microspheres (PGE), respectively. These materials are mixed to form a "microspheres-in-gel" KM13E@PGE system. In vitro, KM13E@PGE abruptly released IL-10+ EVs after 3 days and slowly released SOX9+ EVs for more than 30 days. In vivo, KM13E@PGE increased the CD206+ M2 macrophage proportion in the synovial tissue and decreased the tumor necrosis factor-α and IL-1ß levels. The aggrecan and SOX9 expressions in the cartilage tissues are significantly elevated following inflammation subsidence. This performance is not achieved using anti-inflammatory or cartilage repair therapy alone. The present study provides an injectable, integrated delivery system with spatiotemporal control release of dual EVs, and may inspire logic-gates strategies for OA treatment.


Subject(s)
Disease Models, Animal , Extracellular Vesicles , Osteoarthritis , Extracellular Vesicles/metabolism , Osteoarthritis/metabolism , Animals , Hydrogels/chemistry , Macrophages/metabolism , Interleukin-10/metabolism , Humans , SOX9 Transcription Factor/metabolism , Mice , Rats
8.
Front Bioeng Biotechnol ; 12: 1374352, 2024.
Article in English | MEDLINE | ID: mdl-38694621

ABSTRACT

Background: The treatment of patellar tendon injury has always been an unsolved problem, and mechanical characterization is very important for its repair and reconstruction. Elastin is a contributor to mechanics, but it is not clear how it affects the elasticity, viscoelastic properties, and structure of patellar tendon. Methods: The patellar tendons from six fresh adult experimental pigs were used in this study and they were made into 77 samples. The patellar tendon was specifically degraded by elastase, and the regional mechanical response and structural changes were investigated by: (1) Based on the previous study of elastase treatment conditions, the biochemical quantification of collagen, glycosaminoglycan and total protein was carried out; (2) The patellar tendon was divided into the proximal, central, and distal regions, and then the axial tensile test and stress relaxation test were performed before and after phosphate-buffered saline (PBS) or elastase treatment; (3) The dynamic constitutive model was established by the obtained mechanical data; (4) The structural relationship between elastin and collagen fibers was analyzed by two-photon microscopy and histology. Results: There was no statistical difference in mechanics between patellar tendon regions. Compared with those before elastase treatment, the low tensile modulus decreased by 75%-80%, the high tensile modulus decreased by 38%-47%, and the transition strain was prolonged after treatment. For viscoelastic behavior, the stress relaxation increased, the initial slope increased by 55%, the saturation slope increased by 44%, and the transition time increased by 25% after enzyme treatment. Elastin degradation made the collagen fibers of patellar tendon become disordered and looser, and the fiber wavelength increased significantly. Conclusion: The results of this study show that elastin plays an important role in the mechanical properties and fiber structure stability of patellar tendon, which supplements the structure-function relationship information of patellar tendon. The established constitutive model is of great significance to the prediction, repair and replacement of patellar tendon injury. In addition, human patellar tendon has a higher elastin content, so the results of this study can provide supporting information on the natural properties of tendon elastin degradation and guide the development of artificial patellar tendon biomaterials.

9.
Biomed Pharmacother ; 175: 116631, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663105

ABSTRACT

Diabetes mellitus (DM) is a prevalent chronic disease in the 21st century due to increased lifespan and unhealthy lifestyle choices. Extensive research indicates that exercise can play a significant role in regulating systemic metabolism by improving energy metabolism and mitigating various metabolic disorders, including DM. Irisin, a well-known exerkine, was initially reported to enhance energy expenditure by indicating the browning of white adipose tissue (WAT) through peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) signaling. In this review, we summarize the potential mechanisms underlying the beneficial effects of Irisin on glucose dysmetabolism, including reducing gluconeogenesis, enhancing insulin energy expenditure, and promoting glycogenesis. Additionally, we highlight Irisin's potential to improve diabetic vascular diseases by stimulating nitric oxide (NO) production, reducing oxidative and nitrosative stress, curbing inflammation, and attenuating endothelial cell aging. Furthermore, we discuss the potential of Irisin to improve diabetic cardiomyopathy by preventing cardiomyocyte loss and reducing myocardial hypertrophy and fibrosis. Given Irisin's promising functions in managing diabetic cardiomyopathy and vascular diseases, targeting Irisin for therapeutic purposes could be a fruitful avenue for future research and clinical interventions.


Subject(s)
Diabetic Cardiomyopathies , Fibronectins , Humans , Fibronectins/metabolism , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Angiopathies/metabolism , Energy Metabolism , Vascular Diseases/metabolism , Vascular Diseases/drug therapy
10.
Small Methods ; : e2301754, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593371

ABSTRACT

The incorporation of engineered muscle-tendon junction (MTJ) with organ-on-a-chip technology provides promising in vitro models for the understanding of cell-cell interaction at the interface between muscle and tendon tissues. However, developing engineered MTJ tissue with biomimetic anatomical interface structure remains challenging, and the precise co-culture of engineered interface tissue is further regarded as a remarkable obstacle. Herein, an interwoven waving approach is presented to develop engineered MTJ tissue with a biomimetic "M-type" interface structure, and further integrated into a precise co-culture microfluidic device for functional MTJ-on-a-chip fabrication. These multiscale MTJ scaffolds based on electrospun nanofiber yarns enabled 3D cellular alignment and differentiation, and the "M-type" structure led to cellular organization and interaction at the interface zone. Crucially, a compartmentalized co-culture system is integrated into an MTJ-on-a-chip device for the precise co-culture of muscle and tendon zones using their medium at the same time. Such an MTJ-on-a-chip device is further served for drug-associated MTJ toxic or protective efficacy investigations. These results highlight that these interwoven nanofibrous scaffolds with biomimetic "M-type" interface are beneficial for engineered MTJ tissue development, and MTJ-on-a-chip with precise co-culture system indicated their promising potential as in vitro musculoskeletal models for drug development and biological mechanism studies.

11.
Front Pharmacol ; 15: 1341346, 2024.
Article in English | MEDLINE | ID: mdl-38666027

ABSTRACT

Background: Head and neck squamous cell carcinoma (HNSCC), an extremely aggressive tumor, is often associated with poor outcomes. The standard anatomy-based tumor-node-metastasis staging system does not satisfy the requirements for screening treatment-sensitive patients. Thus, an ideal biomarker leading to precise screening and treatment of HNSCC is urgently needed. Methods: Ten machine learning algorithms-Lasso, Ridge, stepwise Cox, CoxBoost, elastic network (Enet), partial least squares regression for Cox (plsRcox), random survival forest (RSF), generalized boosted regression modelling (GBM), supervised principal components (SuperPC), and survival support vector machine (survival-SVM)-as well as 85 algorithm combinations were applied to construct and identify a consensus immune-derived gene signature (CIDGS). Results: Based on the expression profiles of three cohorts comprising 719 patients with HNSCC, we identified 236 consensus prognostic genes, which were then filtered into a CIDGS, using the 10 machine learning algorithms and 85 algorithm combinations. The results of a study involving a training cohort, two testing cohorts, and a meta-cohort consistently demonstrated that CIDGS was capable of accurately predicting prognoses for HNSCC. Incorporation of several core clinical features and 51 previously reported signatures, enhanced the predictive capacity of the CIDGS to a level which was markedly superior to that of other signatures. Notably, patients with low CIDGS displayed fewer genomic alterations and higher immune cell infiltrate levels, as well as increased sensitivity to immunotherapy and other therapeutic agents, in addition to receiving better prognoses. The survival times of HNSCC patients with high CIDGS, in particular, were shorter. Moreover, CIDGS enabled accurate stratification of the response to immunotherapy and prognoses for bladder cancer. Niclosamide and ruxolitinib showed potential as therapeutic agents in HNSCC patients with high CIDGS. Conclusion: CIDGS may be used for stratifying risks as well as for predicting the outcome of patients with HNSCC in a clinical setting.

12.
Cell Death Discov ; 10(1): 117, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453885

ABSTRACT

Development of B cell memory is a conundrum that scientists are still exploring. Studies have been conducted in vitro and using advanced animal models to elucidate the mechanism underlying the generation of memory B cells (MBCs), the precise roles of MBCs against pathogens, and their protective functions against repeated infections throughout life. Lifelong immunity against invading diseases is mainly the result of overcoming a single infection. This protection is largely mediated by the two main components of B cell memory-MBCs and long-lived plasma cells (PCs). The chemical and cellular mechanisms that encourage fat selection for MBCs or long-lived PCs are an area of active research. Despite the fact that nearly all available vaccinations rely on the capacity to elicit B-cell memory, we have yet to develop successful vaccines that can induce broad-scale protective MBCs against some of the deadliest diseases, including malaria and AIDS. A deeper understanding of the specific cellular and molecular pathways that govern the generation, function, and reactivation of MBCs is critical for overcoming the challenges associated with vaccine development. Here, we reviewed literature on the development of MBCs and their reactivation, interaction with other cell types, strategies against invading pathogens, and function throughout life and discussed the recent advances regarding the key signals and transcription factors which regulate B cell memory and their relevance to the quest for vaccine development.

13.
Bioengineering (Basel) ; 11(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38534506

ABSTRACT

Gastric cancer poses a societal and economic burden, prompting an exploration into the development of materials suitable for gastric reconstruction. However, there is a dearth of studies on the mechanical properties of porcine and human stomachs. Therefore, this study was conducted to elucidate their mechanical properties, focusing on interspecies correlations. Stress relaxation and tensile tests assessed the hyperelastic and viscoelastic characteristics of porcine and human stomachs. The thickness, stress-strain curve, elastic modulus, and stress relaxation were assessed. Porcine stomachs were significantly thicker than human stomachs. The stiffness contrast between porcine and human stomachs was evident. Porcine stomachs demonstrated varying elastic modulus values, with the highest in the longitudinal mucosa layer of the corpus and the lowest in the longitudinal intact layer of the fundus. In human stomachs, the elastic modulus of the longitudinal muscular layer of the antrum was the highest, whereas that of the circumferential muscularis layer of the corpus was the lowest. The degree of stress relaxation was higher in human stomachs than in porcine stomachs. This study comprehensively elucidated the differences between porcine and human stomachs attributable to variations across different regions and tissue layers, providing essential biomechanical support for subsequent studies in this field.

14.
Breast Cancer Res ; 26(1): 40, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459598

ABSTRACT

BACKGROUND: 99mTc radiolabeled nanobody NM-02 (99mTc-NM-02) is a novel single photon emission computed tomography (SPECT) probe with a high affinity and specificity for human epidermal growth factor receptor 2 (HER2). In this study, a clinical imaging trial was conducted to investigate the relationship between 99mTc-NM-02 uptake and HER2 expression in patients with breast cancer. METHODS: Thirty patients with pathologically confirmed breast cancer were recruited and imaged with both 99mTc-NM-02 SPECT/computed tomography (CT) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT. According to the treatment conditions before recruitment, patients were divided into two groups, the newly diagnosed group (n = 24) and the treated group (n = 6). The maximal standard uptake value (SUVmax) of 18F-FDG and SUVmax and mean SUV (SUVmean) of 99mTc-NM-02 in the lesions were determined to analyze the relationship with HER2 expression. RESULTS: No meaningful relationship was observed between 18F-FDG uptake and HER2 expression in 30 patients with breast cancer. 99mTc-NM-02 uptake was positively correlated with HER2 expression in the newly diagnosed group, but no correlation was observed in the treated group. 99mTc-NM-02 uptake in HER2-positive lesions was lower in those with effective HER2-targeted therapy compared with the newly diagnosed group. 99mTc-NM-02 SPECT/CT detected brain and bone metastases of breast cancer with a different imaging pattern from 18F-FDG PET/CT. 99mTc-NM-02 showed no non-specific uptake in inflamed tissues and revealed intra- and intertumoral HER2 heterogeneity by SPECT/CT imaging in 9 of the 30 patients with breast cancer. CONCLUSIONS: 99mTc-NM-02 SPECT/CT has the potential for visualizing whole-body HER2 overexpression in untreated patients, making it a promising method for HER2 assessment in patients with breast cancer. TRIAL REGISTRATION: NCT04674722, Date of registration: December 19, 2020.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Receptor, ErbB-2 , Female , Humans , Bone Neoplasms/secondary , Breast Neoplasms/diagnostic imaging , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , Single-Domain Antibodies
15.
J Exp Clin Cancer Res ; 43(1): 62, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38419081

ABSTRACT

BACKGROUND: In recent years, the development of adjunctive therapeutic hyperthermia for cancer therapy has received considerable attention. However, the mechanisms underlying hyperthermia resistance are still poorly understood. In this study, we investigated the roles of cold­inducible RNA binding protein (Cirbp) in regulating hyperthermia resistance and underlying mechanisms in nasopharyngeal carcinoma (NPC). METHODS: CCK-8 assay, colony formation assay, tumor sphere formation assay, qRT-PCR, Western blot were employed to examine the effects of hyperthermia (HT), HT + oridonin(Ori) or HT + radiotherapy (RT) on the proliferation and stemness of NPC cells. RNA sequencing was applied to gain differentially expressed genes upon hyperthermia. Gain-of-function and loss-of-function experiments were used to evaluate the effects of RNAi-mediated Cirbp silencing or Cirbp overexpression on the sensitivity or resistance of NPC cells and cancer stem-like cells to hyperthermia by CCK-8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay, and in subcutaneous xenograft animal model. miRNA transient transfection and luciferase reporter assay were used to demonstrate that Cirbp is a direct target of miR-377-3p. The phosphorylation levels of key members in ATM-Chk2 and ATR-Chk1 pathways were detected by Western blot. RESULTS: Our results firstly revealed that hyperthermia significantly attenuated the stemness of NPC cells, while combination treatment of hyperthermia and oridonin dramatically increased the killing effect on NPC cells and cancer stem cell (CSC)­like population. Moreover, hyperthermia substantially improved the sensitivity of radiation­resistant NPC cells and CSC­like cells to radiotherapy. Hyperthermia noticeably suppressed Cirbp expression in NPC cells and xenograft tumor tissues. Furthermore, Cirbp inhibition remarkably boosted anti­tumor­killing activity of hyperthermia against NPC cells and CSC­like cells, whereas ectopic expression of Cirbp compromised tumor­killing effect of hyperthermia on these cells, indicating that Cirbp overexpression induces hyperthermia resistance. ThermomiR-377-3p improved the sensitivity of NPC cells and CSC­like cells to hyperthermia in vitro by directly suppressing Cirbp expression. More importantly, our results displayed the significantly boosted sensitization of tumor xenografts to hyperthermia by Cirbp silencing in vivo, but ectopic expression of Cirbp almost completely counteracted hyperthermia-mediated tumor cell-killing effect against tumor xenografts in vivo. Mechanistically, Cirbp silencing-induced inhibition of DNA damage repair by inactivating ATM-Chk2 and ATR-Chk1 pathways, decrease in stemness and increase in cell death contributed to hyperthermic sensitization; conversely, Cirbp overexpression-induced promotion of DNA damage repair, increase in stemness and decrease in cell apoptosis contributed to hyperthermia resistance. CONCLUSION: Taken together, these findings reveal a previously unrecognized role for Cirbp in positively regulating hyperthermia resistance and suggest that thermomiR-377-3p and its target gene Cirbp represent promising targets for therapeutic hyperthermia.


Subject(s)
Diterpenes, Kaurane , Hyperthermia, Induced , MicroRNAs , Nasopharyngeal Neoplasms , Animals , Humans , Nasopharyngeal Neoplasms/pathology , Sincalide/metabolism , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/pathology , MicroRNAs/genetics , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic
16.
Front Bioeng Biotechnol ; 12: 1353797, 2024.
Article in English | MEDLINE | ID: mdl-38375455

ABSTRACT

Objective: Compare the spine's stability after laminectomy (LN) and laminoplasty (LP) for two posterior surgeries. Simultaneously, design a new vertebral titanium porous mini plate (TPMP) to achieve firm fixation of the open-door vertebral LP fully. The objective is to enhance the fixation stability, effectively prevent the possibility of "re-closure," and may facilitate bone healing. Methods: TPMP was designed by incorporating a fusion body and porous structures, and a three-dimensional finite element cervical model of C2-T1 was constructed and validated. Load LN and LP finite element models, respectively, and analyze and simulate the detailed processes of the two surgeries. It was simultaneously implanting the TPMP into LP to evaluate its biomechanical properties. Results: We find that the range of motion (ROM) of C4-C5 after LN surgery was greater than that of LP implanted with different plates alone. Furthermore, flexion-extension, lateral bending, and axial rotation reflect this change. More noteworthy is that LN has a much larger ROM on C2-C3 in axial rotation. The ROM of LP implanted with two different plates is similar. There is almost no difference in facet joint stress in lateral bending. The facet joint stress of LN is smaller on C2-C3 and C4-C5, and larger more prominent on C5-C6 in the flexion-extension. Regarding intervertebral disc pressure (IDP), there is little difference between different surgeries except for the LN on C2-C3 in axial rotation. The plate displacement specificity does not significantly differ from LP with vertebral titanium mini-plate (TMP) and LP with TPMP after surgery. The stress of LP with TPMP is larger in C4-C5, C5-C6. Moreover, LP with TMP shows greater stress in the C3-C4 during flexion-extension and lateral bending. Conclusion: LP may have better postoperative stability when posterior approach surgery is used to treat CSM; at the same time, the new type of vertebral titanium mini-plate can achieve almost the same effect as the traditional titanium mini-plate after surgery for LP. In addition, it has specific potential due to the porous structure promoting bone fusion.

17.
J Physiol Biochem ; 80(2): 303-315, 2024 May.
Article in English | MEDLINE | ID: mdl-38175499

ABSTRACT

Lactate, an important exercise metabolite, induces white adipose tissue browning by upregulated uncoupling protein 1 (UCP1) expression. However, the function of lactate during browning of inguinal white adipose tissue (iWAT) caused by exercise is unclear. Here, we considered lactate as an exercise supplement and investigated the effects of chronic pre-exercise lactate administration on energy metabolism and adipose tissue browning. C57B/L6 male mice (5 weeks of age) were divided into six groups. We evaluated the changes in blood lactate levels in each group of mice after the intervention. Energy expenditure was measured after the intervention immediately by indirect calorimetry. The marker protein levels and gene expressions were determined by western-blot and quantitative real-time PCR. HIIT significantly decreased adipose tissue weight while increased energy expenditure and the expression of UCP1 in iWAT; however, these regulations were inhibited in the DCA+HIIT group. Compared with the MICT and LAC groups, long-term lactate injection before MICT led to lower WAT weight to body weight ratios and higher energy expenditure in mice. Furthermore, the marker genes of browning in iWAT, such as Ucp1 and Pparγ, were significantly increased in the LAC+MICT group than in the other groups, and the expression of monocarboxylate transporter-1 (Mct1) mRNA was also significantly increased. Lactate was involved in exercise-mediated browning of iWAT, and its mechanism might be the increased of lactate transport through MCT1 or PPARγ upregulation induced by exercise. These findings suggest exogenous lactate may be a new exercise supplement to regulate metabolism.


Subject(s)
Adipose Tissue, Brown , Adipose Tissue, White , Energy Metabolism , Lactic Acid , Mice, Inbred C57BL , Physical Conditioning, Animal , Symporters , Uncoupling Protein 1 , Animals , Male , Adipose Tissue, White/metabolism , Lactic Acid/metabolism , Lactic Acid/blood , Adipose Tissue, Brown/metabolism , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Mice , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , PPAR gamma/metabolism , PPAR gamma/genetics
18.
Adv Healthc Mater ; 13(1): e2301338, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37471526

ABSTRACT

Cardiovascular disease is a major cause of mortality worldwide, and current preclinical models including traditional animal models and 2D cell culture models have limitations in replicating human native heart physiology and response to drugs. Heart-on-a-chip (HoC) technology offers a promising solution by combining the advantages of cardiac tissue engineering and microfluidics to create in vitro 3D cardiac models, which can mimic key aspects of human microphysiological systems and provide controllable microenvironments. Herein, recent advances in HoC technologies are introduced, including engineered cardiac microtissue construction in vitro, microfluidic chip fabrication, microenvironmental stimulation, and real-time feedback systems. The development of cardiac tissue engineering methods is focused for 3D microtissue preparation, advanced strategies for HoC fabrication, and current applications of these platforms. Major challenges in HoC fabrication are discussed and the perspective on the potential for these platforms is provided to advance research and clinical applications.


Subject(s)
Heart , Tissue Engineering , Animals , Humans , Heart/physiology , Microfluidics , Cell Culture Techniques , Lab-On-A-Chip Devices
19.
J Vasc Surg Venous Lymphat Disord ; 12(1): 101684, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37708937

ABSTRACT

BACKGROUND: Lymphaticovenular anastomosis (LVA) is a minimally invasive surgical procedure used to treat lymphedema. This surgical procedure connects the superficial lymphatic vessels to nearby veins to establish lymphatic-venous pathways. One of the most common challenges encountered by lymphatic surgeons when performing LVA is a mismatch in the sizes of the veins and lymphatic vessels, with the effectiveness limited by technical constraints. We conducted a pilot study to evaluate the feasibility of an overlapping lockup anastomosis (OLA) LVA technique to address these problems. METHODS: In this study, we present a novel OLA technique for LVA that addresses the challenges with conventional techniques. The OLA technique was used in 10 lymphedema patients between September 2022 and March 2023 to compare OLA and end-to-end anastomosis. The time required for anastomosis, method of anastomosis, patency rates, and lymphedema volume were evaluated in this study. RESULTS: Of 123 LVAs, 44 were performed using the OLA technique in 10 patients, with indocyanine green lymphangiography revealing unobstructed drainage. A single case of slight fluid leakage occurred, which was resolved by reinforcing the sutures. The average anastomosis time for OLA and the end-to-end technique was 5.55 minutes and 12.1 minutes, respectively. The wounds of the patients healed without infection, and the subjective limb circumference decreased. CONCLUSIONS: The OLA technique could serve as a valuable addition to the current LVA technique, especially for cases with a mismatch in the sizes of the lymphatic vessels and veins. This technique has the potential to promote the broader application of LVA in the treatment and prevention of lymphedema.


Subject(s)
Lymphatic Vessels , Lymphedema , Humans , Pilot Projects , Treatment Outcome , Veins/diagnostic imaging , Veins/surgery , Lymphedema/diagnostic imaging , Lymphedema/surgery , Anastomosis, Surgical/methods , Lymphography/methods , Lymphatic Vessels/diagnostic imaging , Lymphatic Vessels/surgery
20.
Int Urol Nephrol ; 56(5): 1537-1542, 2024 May.
Article in English | MEDLINE | ID: mdl-38158506

ABSTRACT

OBJECTIVE: Management of cryptorchidism is typically recommended within the first 18 months of life to maximize fertility potential. However, there is a paucity of longitudinal postoperative data for Chinese infants. We aim to evaluate the Testicular function change when the procedure is done within the first year of life. METHOD: We prospectively enrolled 51 children diagnosed with unilateral inguinal cryptorchidism into the surgical group between January 2021 and January 2022. Orchidopexy was carried out through a single transverse scrotal incision. Assessments of anti-Mullerian hormone (AMH), inhibin B (InhB), testosterone (T) levels, testicular volume and testicular atrophy index (TAI) were conducted at baseline, 6 months, and 1 year following surgery. Concurrently, clinical data from 42 healthy age-matched controls were collected during their routine physical examinations. RESULTS: At 6- and 12-months post-surgery, testicular volume increased significantly to 0.98 ± 0.12 mL and 1.01 ± 0.12ml. AMH levels also rose from 76.40 ± 15.77 ng/mL to 81.52 ± 15.32 ng/mL and 87.50 ± 15.36 ng/mL. However, these parameters are significantly lower than age-matched healthy controls (both P < 0.001). InhB levels significantly increased after surgery and even surpassed those of healthy controls after 6 months (both P < 0.001). The TAI was 16.7% and 8.6% at 6- and 12-months following surgery. CONCLUSION: Although orchiopexy can improve testicular growth and function, the restoration of testicular function to the level of healthy peers might take longer. To expedite the recovery of testicular function and bring it in line with that of peers, we recommend addressing cryptorchidism at the earliest opportunity.


Subject(s)
Cryptorchidism , Male , Child , Infant , Humans , Cryptorchidism/surgery , Orchiopexy , Testis/surgery , Anti-Mullerian Hormone , China
SELECTION OF CITATIONS
SEARCH DETAIL
...