Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters











Publication year range
1.
Eur J Med Chem ; 276: 116625, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38991300

ABSTRACT

The rapid emergence of antibiotic resistance and the scarcity of novel antibacterial agents have necessitated an urgent pursuit for the discovery and development of novel antibacterial agents against multidrug-resistant bacteria. This study involved the design and synthesis of series of novel indole-benzosulfonamide oleanolic acid (OA) derivatives, in which the indole and benzosulfonamide pharmacophores were introduced into the OA skeleton semisynthetically. These target OA derivatives show antibacterial activity against Staphylococcus strains in vitro and in vivo. Among them, derivative c17 was the most promising antibacterial agent while compared with the positive control of norfloxacin, especially against methicillin-resistant Staphylococcus aureus (MRSA) in vitro. In addition, derivative c17 also showed remarkable efficacy against MRSA-infected murine skin model, leading to a significant reduction of bacterial counts during this in vivo study. Furthermore, some preliminary studies indicated that derivative c17 could effectively inhibit and eradicate the biofilm formation, disrupt the integrity of the bacterial cell membrane. Moreover, derivative c17 showed low hemolytic activity and low toxicity to mammalian cells of NIH 3T3 and HEK 293T. These aforementioned findings strongly support the potential of novel indole-benzosulfonamide OA derivatives as anti-MRSA agents.


Subject(s)
Anti-Bacterial Agents , Drug Design , Indoles , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Oleanolic Acid , Sulfonamides , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Mice , Humans , Animals , Structure-Activity Relationship , Oleanolic Acid/pharmacology , Oleanolic Acid/chemistry , Oleanolic Acid/chemical synthesis , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Sulfonamides/pharmacology , Sulfonamides/chemistry , Sulfonamides/chemical synthesis , Molecular Structure , HEK293 Cells , NIH 3T3 Cells , Biofilms/drug effects , Dose-Response Relationship, Drug , Staphylococcal Infections/drug therapy
2.
Adv Mater ; 36(30): e2403322, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38690808

ABSTRACT

2D layered metallic graphite composites are promising electromagnetic wave absorption materials (EWAMs) for their combined properties of abundant interlayer free spaces, rich metallic polarized sites, and high conductivity, but the controllable synthesis remains rather challenging. Herein, a dual-step redox engineering strategy is developed by employing cobalt boron imidazolate framework (Co-BIF) to construct 2D CoNi-alloy embedded B, N-doped carbon layers (2D-CNC) as a promising EWAM. In the first step, a chemical etching oxidation process on Co-BIF is used to obtain an optimized 2D-CoNi-layered double hydroxide (2D-CoNi-LDH) intermediate and in the second, high-temperature calcination reduction is implemented to modify graphitization of the degree of the 2D-CNC. The obtained sample delivers superior reflection loss (RLmin) of -60.1 dB and wide effective absorption bandwidth (EAB) of 6.24 GHz. The synergy mechanisms of interfacial/dipole polarization and magnetic coupling are in-depth evidenced by the hologram and Lorentz electron microscopy, revealing its significant contribution on multireflection and impedance matching. Further theoretical evaluation by COMSOL simulation in different fields based on the dynamic loss process toward the test ring reveals the in situ EW attenuation process. This work presents a strategy to develop multifunctional light-weight infrared stealthy aerogel with superior pressure-resistant, anti-corrosion, and heat-insulating properties for future applications.

3.
Small ; 20(32): e2311389, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38483016

ABSTRACT

Ceria (CeO2) becomes a promising candidate as electromagnetic wave absorbing materials (EWAMs) for their abundant natural source, rich oxygen vacancy, charge conversion, and electron transfer abilities. However, it remains challenging to regulate its nanoscale and atom-scale composition to optimize the absorbing performance and develop high-performance commercial devices. Herein, a facile method to large-scale synthesis CeO2@Co-x% (x = 5, 7, 9, 11, 13) series EWAMs with diverse amounts of decorated CoOx is presented. By modulating the ratio of doped CoOx, a rational hetero-interface is created in CeO2@Co-9% to enhance natural and exchange resonances, improving magnetic loss capability and optimizing impedance matching. Doped CoOx promotes the charge accumulation, interfacial polarization, and multiple scattering of the CeO2 for strengthening the EW absorption and attenuation, which display superb minimum reflective loss (RLmin) of -74.4 dB with a wide effective absorbing bandwidth (EAB) of 5.26 GHz. Furthermore, a dual crosslinking strategy is employed to fabricate CeO2@Co-9% into an aerogel device with integrated lightweight, heat insulation, compression resistance, and fame-retardant functions. This work presents an excellent example of large-scale fast synthesis of high-performance CeO2-based EWAMs and multiplication 3D devices.

4.
Small ; 20(31): e2308378, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38453681

ABSTRACT

Traditional electromagnetic absorbing materials (EWAMs) are usually single functions and can easily affect their performance in diverse application scenarios. Effective integration of EWAMs into multiple function components is a valuable strategy to achieve maximum absorption and multifunction performance while maintaining their indispensable physical and chemical properties. In this work, the polyoxometalates (POMs) serving as "guests" are embedded within the Co-MOFs to construct 3d/4d-bimetallic based crystalline precursors of dielectric/magnetic synergistic system. The proper pyrolysis temperature induced the homogeneously distributed metallic Co and MoCx hetero-units into carbon matrix with modified porous defect engineering to enhance electromagnetic wave (EW). Owing to the brilliant synergistic effect of polarization, magnetic loss, and impedance matching, the superior RLmin of -47.72 dB at 11.76 GHz at the thickness of 2.0 mm and a wide adequate absorption bandwidth (EAB) of 4.58 GHz (7.44-12.02 GHz) covered the whole X-band at the thickness of 2.5 mm for η-MoC/Co@NC-800 are observed. More importantly, the resulting MoCx hybrid polyimide (MCP) aerogel exhibits desirable properties such as structural robustness, nonflammability, excellent thermal insulation, and self-cleaning capabilities that are comparable to those of commercially available products. This work offers inspiration and strategy for creating multipurpose microwave absorbers with intricate structural designs.

5.
Nanoscale ; 16(12): 6249-6258, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38449440

ABSTRACT

The design of electromagnetic wave absorbing materials (EWAMs) has aroused great attention with the express development of electromagnetic devices, which pose a severe EM pollution risk to human health. Herein, an Ag-doped MoCx composite was designed and constructed through a UV-light-induced self-reduction process. The UV-reduction time was controlled on the α-MoC polymer for 0.5-2 hours for modifying different amounts of Ag. As a result, α-MoC@Ag-1.5 exhibited the strongest RLmin of -56.51 dB at 8.8 GHz under a thickness of 3.0 mm and the widest EAB of 4.96 GHz (12.16-17.12 GHz) covering a substantial portion of the Ku-band at a thickness of 2.0 mm due to the synergy of the conductivity loss and abundant interfacial polarization sites. Additionally, a new strategy for computer simulation technology was proposed to simulate substantial radar cross-sectional reduction values with real far-field conditions, whereby absorbing coatings with α-MoC@Ag-1.5 were proved to contribute to a remarkable radar cross-sectional reduction of 37.4 dB m2.

6.
Adv Healthc Mater ; 13(9): e2303252, 2024 04.
Article in English | MEDLINE | ID: mdl-38245866

ABSTRACT

The complex preparation, weak wet tissue adhesion, and limited biological activity of traditional oral wound dressings usually impede their efficient treatment and healing for diabetic oral mucosal defects. To overcome these problems, a novel hydrogel adhesive (named CFT hydrogel) is rapidly constructed using a one-step method based on dual-dynamic covalent cross-linking. Compared with the commercial oral patches, the CFT hydrogel shows superior in vivo (rat tongue) wet tissue adhesion performance. Additionally, the CFT hydrogel exhibits unique acid-responsive properties, thereby facilitating the release of bioactive molecule tannic acid in the acidic diabetic wound microenvironment. And a series of in vitro experiments substantiate the favorable biocompatibility and bioactivity properties (including antibacterial, antioxidative, anti-inflammatory, and angiogenetic effects) exhibited by CFT hydrogel. Moreover, in vivo experiments conducted on a diabetic rat model with oral mucosal defects demonstrate that the CFT hydrogel exhibits significant efficacy in protecting against mucosal wounds, alleviating inflammatory reactions, thereby facilitating the wound-healing process. Taken together, this study provides a promising and comprehensive therapeutic option with great potential for the clinical management of oral mucosa defects in diabetic patients.


Subject(s)
Diabetes Mellitus , Mouth Mucosa , Polyphenols , Humans , Animals , Rats , Hydrogels/pharmacology , Tannins/pharmacology , Tannins/therapeutic use , Tissue Adhesions , Anti-Bacterial Agents
7.
RSC Adv ; 14(6): 3771-3775, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38274166

ABSTRACT

The molecular orbital (MO) theory is one of the most useful methods to describe the formation of a new chemical bond between two molecules. However, it is less often employed for modelling non-bonded intermolecular interactions because of the small charge-transfer contribution. Here we introduce two simple descriptors, the energy difference (EDA) of the HOMO of an electron donor and the LUMO of an acceptor against such HOMO-LUMO overlap integral (SDA), to show that the MO theory could give a unified charge-transfer picture of both bonding and non-bonding interactions for two molecules. It is found that similar types of interactions tend to be closer to each other in this 2D graph. Notably, in a transition region from strong bonding to single-electron transfer, the interacting molecular pairs appear to present a "hybrid" between chemical bonding and a radical pair, such as anion-π* interactions. It is concluded that the number of nodes in the HOMO and LUMO play a crucial role in determining the bonding character of the molecular pair.

8.
Inorg Chem ; 62(51): 21290-21298, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38085535

ABSTRACT

Single-atom metal-anchored porphyrin-based metal-organic frameworks (MOFs) have shown excellent light absorption, catalytic sites, and high stability during photocatalytic reactions, while there are still challenges for facile assembly with quantum dots to enhance catalytic dynamics. Herein, a kind of Fe single atom-doped MOF material (Fe-MOF-525) was ball milled with CdS in a proper ratio through Fe-N4 and Fe-N-C bonding, which showed the enhanced photoinduced carrier separation ability. As a result, extended light absorption ranges of CdS/Fe-MOF-5252.3 induced the promotion of the photocatalytic hydrogen (H2) value (3638.6 µmol g-1 h-1), which was 7.2 and 2.3 times higher than those of Fe-MOF-525 and CdS. In this work, the facile synthetic technique, specific active sites, and enhanced catalytic dynamics in the composite highlight the future research on MOF-based heterojunctions and their potential photocatalysis applications..

9.
Adv Mater ; 35(52): e2310147, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37983856

ABSTRACT

Solid-state electrolytes (SSEs) based on metal organic framework (MOF) and polymer mixed matrix membranes (MMMs) have shown great promotions in both lithium-ion conduction and interfacial resistance in lithium metal batteries (LMBs). However, the unwanted structural evolution and the and the obscure electrochemical reaction mechanism among two phases limit their further optimization and commercial application. Herein, fluorine-modified zirconium MOF with diverse F-quantities is synthesized, denoted as Zr-BDC-Fx (x = 0, 2, 4), to assemble high performance quais-solid-state electrolytes (QSSEs) with PVDF-HFP. The chemical complexation of F-sites in Zr-BDC-F4 stabilized PVDF-HFP chains in ß-phase and disordered oscillation with enhanced charge transfer and Li transmit property. Besides, the porous confinement and electronegativity of F-groups enhanced the capture and dissociation of TFSI- anions and the homogeneous deposition of LiF solid electrolyte interphase (SEI), promoting the high-efficient transport of Li+ ions and inhibiting the growth of Li dendrites. The superb specific capacities in high-loaded Li.

10.
Adv Sci (Weinh) ; 10(28): e2303217, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37526339

ABSTRACT

Atomic-level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero-units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe-bimetallic energetic metallic triazole framework (CoFe@E-MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe-inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss (RLmin ) of -53.15 dB and specific reflection loss (SRL) of -101.24 dB mg-1 mm-1 for CoFe@HPC1000 are achieved. More importantly, the single-atomic chemical bonding among Co─Fe on the nanopores is captured by extended X-ray absorption fine structure, which reveals the formation mechanism of nanopore-confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future.

11.
Angew Chem Int Ed Engl ; 62(39): e202304947, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37249158

ABSTRACT

Pursuing high power density lithium metal battery with high safety is essential for developing next-generation energy-storage devices, but uncontrollable electrolyte degradation and the consequence formed unstable solid-electrolyte interface (SEI) make the task really challenging. Herein, an ionic liquid (IL) confined MOF/Polymer 3D-porous membrane was constructed for boosting in situ electrochemical transformations of Janus-heterarchical LiF/Li3 N-rich SEI films on the nanofibers. Such a 3D-Janus SEI-incorporated into the separator offers fast Li+ transport routes, showing superior room-temperature ionic conductivity of 8.17×10-4  S cm-1 and Li+ transfer number of 0.82. The cryo-TEM was employed to visually monitor the in situ formed LiF and Li3 N nanocrystals in SEI and the deposition of Li dendrites, which is greatly benefit to the theoretical simulation and kinetic analysis of the structural evolution during the battery charge and discharge process. In particular, this membrane with high thermal stability and mechanical strength used in solid-state Li||LiFePO4 and Li||NCM-811 full cells and even in pouch cells showed enhanced rate-performance and ultra-long life spans.

12.
Int J Biol Macromol ; 241: 124657, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37119893

ABSTRACT

Electrochromic materials have attracted extensive attention recently due to their versatile applications in smart windows, displays, antiglare rearview mirrors, and so on. Herein we report a new electrochromic composite prepared from collagen and polyaniline (PANI) through a self-assembly assisted co-precipitation method. The introduction of hydrophilic collagen macromolecules into PANI nanoparticles makes the collagen/PANI (C/PANI) nanocomposite obtain excellent dispersibility in water, which provides good environmental-friendly solution processability. Furthermore, the C/PANI nanocomposite exhibits excellent film-forming properties and adhesion to the ITO glass matrix. The resulting electrochromic film of the C/PANI nanocomposite displays significantly improved cycling stability compared with the pure PANI film after 500 coloring-bleaching cycles. On the other hand, the composite films also exhibit yellow, green and blue polychromatic properties at different applied voltages and high average transmittance at the bleaching state. The C/PANI electrochromic material illustrates scaling potential for the application of electrochromic devices.


Subject(s)
Aniline Compounds , Nanocomposites , Collagen , Hypochlorous Acid , Sodium Compounds
13.
Angew Chem Int Ed Engl ; 62(25): e202304634, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37076750

ABSTRACT

The solar-driven evolution of hydrogen from water using particulate photocatalysts is considered one of the most economical and promising protocols for achieving a stable supply of renewable energy. However, the efficiency of photocatalytic water splitting is far from satisfactory due to the sluggish electron-hole pair separation kinetics. Herein, isolated Mo atoms in a high oxidation state have been incorporated into the lattice of Cd0.5 Zn0.5 S (CZS@Mo) nanorods, which exhibit photocatalytic hydrogen evolution rate of 11.32 mmol g-1 h-1 (226.4 µmol h-1 ; catalyst dosage 20 mg). Experimental and theoretical simulation results imply that the highly oxidized Mo species lead to mobile-charge imbalances in CZS and induce the directional photogenerated electrons transfer, resulting in effectively inhibited electron-hole recombination and greatly enhanced photocatalytic efficiency.


Subject(s)
Dust , Electrons , Computer Simulation , Hydrogen , Water
14.
Nat Commun ; 14(1): 1514, 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36934094

ABSTRACT

Pure organic room-temperature phosphorescence (RTP), particularly from guest-host doped systems, has seen exponential growth in the last several years due to their high modulation flexibility, and yet challenges remain with respect to mechanistic elucidations and advantageous applications. Here we show that by constructing guest-host doped RTP systems from chiral components, namely, chiral amino compound-modified phthalimide hosts and naphthalimide guests, a chiral-selective RTP enhancement phenomenon can be observed. For example, R-enantiomeric guests in R-enantiomeric hosts produce strong red RTP afterglow while no appreciable RTP could be observed in the S-R guest-host counterpart. An unprecedented RTP intensity difference > 102 folds with the ability to distinguish an enantiomeric excess of 98% could be achieved. Temperature-dependent measurements suggest that a chirality-dependent energy transfer process may be involved in the observed phenomenon, which can be harnessed to extend the RTP application to the chiral recognition of amino compounds, such as amino alcohols.

15.
Angew Chem Int Ed Engl ; 62(12): e202218712, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36718871

ABSTRACT

Organic room-temperature phosphorescent (RTP) materials routinely incorporate polymeric components, which usually act as non-functional or "inert" media to protect excited-state phosphors from thermal and collisional quenching, but are lesser explored for other influences. Here, we report some exemplary "active roles" of polymer matrices played in organic RTP materials, including: 1) color modulation of total delayed emissions via balancing the population ratio between thermally-activated delayed fluorescence (TADF) and RTP due to dielectric-dependent intersystem crossing; 2) altered air sensitivity of RTP materials by generating various surface morphologies such as nano-sized granules; 3) enhanced bacterial elimination for enhanced electrostatic interactions with negatively charged bio-membranes. These active roles demonstrated that the vast library of polymeric structures and functionalities can be married to organic phosphors to broaden new application horizons for RTP materials.

16.
Chem Asian J ; 18(1): e202200994, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36269572

ABSTRACT

Dopants and defects are crucial for multifunctional carbon-based metal-free electrocatalysts, but the rational design and facile production remain as a big challenge. Herein, we report a novel strategy using salt-assisted pyrolysis of derivatized fullerenes to fabricate defect-rich and N-doped carbon nanosheets. Molecular level modification of C60 via amination and hydroxylation gives rise to well-defined fullerol molecules bearing N-containing groups (FNG). Subsequent calcination of FNG and NaCl at 750 °C generates porous carbon nanosheets (FNCNs-750) and turns the N-containing groups into high-level N dopants (12.43 at.%). Further pyrolysis of FNCNs-750 at 900 °C (FNCNs-900) leads to a reduced N content populated by graphitic-N. Meanwhile, abundant intrinsic defects (e. g., topological defects and edges) are created due to the breakdown of fullerene cages and partial removal of edged N atoms. These structural features endow FNCNs-900 with outstanding trifunctional catalytic performance, better than or close to the noble metal-based benchmark catalysts.

17.
ACS Appl Mater Interfaces ; 14(46): 52359-52369, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36346778

ABSTRACT

Development of a novel strategy to tackle bacterial-contaminated complex industrial wastewaters containing refractory organic pollutants is of great demand. In this study, polydopamine (PDA)-coated magnetic cellulose nanofiber (MCNF)-loaded silver nanoparticle (AgNP) (MCNF/PDA-Ag) nanocomposites were designed and applied for efficient degradation of organic dye pollutants and inactivation of Escherichia coli (E. coli) in wastewater. In the presence of NaBH4, MCNF/PDA-Ag could achieve a high catalytic reduction rate of 6.54 min-1 for the removal of methylene blue. Similarly, it showed good catalytic reduction performance for methyl orange (0.63 min-1) and 4-nitrophenol (2.94 min-1). The MCNF/PDA-Ag nanocomposites can be easily magnetically recycled and reused with negligible loss of catalytic performance. Moreover, this nanocatalyst also exhibited excellent disinfection performance against E. coli, with more than 99% disinfection ratio at very low doses (50 µg/mL). Overall, this work provides new insights into a delicate design of advanced magnetically recyclable silver nanocomposites with ultrahigh catalytic rates and excellent antibacterial properties from sustainable nature biomass.


Subject(s)
Environmental Pollutants , Metal Nanoparticles , Silver/pharmacology , Disinfection , Escherichia coli , Magnetic Phenomena
18.
ACS Appl Mater Interfaces ; 14(37): 42402-42411, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36070607

ABSTRACT

Flexible electrochromic devices (FECDs) have been regarded as an ideal stratagem for wearable displays. However, it remains a great challenge to achieve long-term stability for high-performance FECDs due to their severe electrolyte deformation/leakage under repeated bending. Herein, inspired by the rough and fluffy microstructure of cobwebs, we prepared a porous polylactic acid (PLA) network through electrospinning and nonsolvent-induced phase separation. This loosely interlaced PLA network can be well infiltrated by electrolytes and exhibits extraordinarily high transparency; in addition, its surface contains numerous tiny holes to effectively load electrolytes to mitigate deformation. Furthermore, we also introduced silver nanowires (AgNWs) as the supporting network to load and connect electrochromic materials. After assembling them with graphene (GR) electrodes, a wearable FECD with a quintuple network structure (two GR networks, two AgNW networks, and one PLA network) was successfully prepared. The resulting FECD can realize high optical modulation (more than 70%), excellent cyclic stability (retain 95% after 1000 cycles), and innovative bending resistance (retain 84.8% after 6000 bending cycles). This work not only solves the long-lasting challenge of developing FECD with high optical modulation and bending resistances but also provides an energetic paradigm for diverse soft electronics used in harsh environments.

19.
Nanomicro Lett ; 14(1): 96, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35384519

ABSTRACT

Improving the atom utilization of metals and clarifying the M-M' interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co-Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of - 57.7 dB and a specific RL value of - 192 dB mg-1 mm-1 at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption.

20.
Chem Commun (Camb) ; 58(28): 4496-4499, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35302120

ABSTRACT

Hierarchical pores with accessible active sites in carbon are highly desired for enhancing sodium storage in sodium ion batteries (SIBs). However, it is still challenging to construct such materials with tunable architectures. Herein, a sponge-like 3D hierarchical porous Fe-doped carbon (Fe@NCS) was successfully assembled from an energetic framework. The continuous distribution of micro/meso/macro-pores in the range of 5 nm-2 µm and homogenously decorated Fe atoms were achieved, which greatly enhanced the storage and diffusion of Na+ ions and displayed brilliant high-rate capability and cycling stability.

SELECTION OF CITATIONS
SEARCH DETAIL