Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Chin Med ; 19(1): 76, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831430

ABSTRACT

BACKGROUND: Chrysanthemum morifolium Ramat, a traditional Chinese medicine, has the effects on liver clearing, vision improving, and anti-inflammation. C. morifolium and probiotics have been individually studied for their beneficial effects on metabolic diseases. However, the underlying molecular mechanisms were not completely elucidated. This study aims to elucidate the potential molecular mechanisms of C. morifolium and probiotics combination (CP) on alleviating nonalcoholic fatty liver disease (NAFLD) and the dysregulation of glucose metabolism in high-fat diet (HFD)-fed mice. METHODS: The therapeutic effect of CP on metabolism was evaluated by liver histology and serum biochemical analysis, as well as glucose tolerance test. The impact of CP on gut microbiota was analyzed by 16S rRNA sequencing and fecal microbiota transplantation. Hepatic transcriptomic analysis was performed with the key genes and proteins validated by RT-qPCR and western blotting. In addition, whole body Pparα knockout (Pparα-/-) mice were used to confirm the CP-mediated pathway. RESULTS: CP supplementation ameliorated metabolic disorders by reducing body weight and hepatic steatosis, and improving glucose intolerance and insulin resistance in HFD fed mice. CP intervention mitigated the HFD-induced gut microbiota dysbiosis, which contributed at least in part, to the beneficial effect of improving glucose metabolism. In addition, hepatic transcriptomic analysis showed that CP modulated the expression of genes associated with lipid metabolism. CP downregulated the mRNA level of lipid droplet-binding proteins, such as Cidea and Cidec in the liver, leading to more substrates for fatty acid oxidation (FAO). Meanwhile, the expression of CPT1α, the rate-limiting enzyme of FAO, was significantly increased upon CP treatment. Mechanistically, though CP didn't affect the total PPARα level, it promoted the nuclear localization of PPARα, which contributed to the reduced expression of Cidea and Cidec, and increased expression of CPT1α, leading to activated FAO. Moreover, whole body PPARα deficiency abolished the anti-NAFLD effect of CP, suggesting the importance of PPARα in CP-mediated beneficial effect. CONCLUSION: This study revealed the hypoglycemic and hepatoprotective effect of CP by regulating gut microbiota composition and PPARα subcellular localization, highlighting its potential for therapeutic candidate for metabolic disorders.

2.
Nat Commun ; 15(1): 3995, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734699

ABSTRACT

Optical detection of magnetic field is appealing for integrated photonics; however, the light-matter interaction is usually weak at low field. Here we observe that the photoluminescence (PL) decreases by > 40% at 10 mT in rubrene microcrystals (RMCs) prepared by a capillary-bridge assembly method. The giant magneto-PL (MPL) relies on the singlet-triplet conversion involving triplet-triplet pairs, through the processes of singlet fission (SF) and triplet fusion (TF) during radiative decay. Importantly, the size of RMCs is critical for maximizing MPL as it influences on the photophysical processes of spin state conversion. The SF/TF process is quantified by measuring the prompt/delayed PL with time-resolved spectroscopies, which shows that the geminate SF/TF associated with triplet-triplet pairs are responsible for the giant MPL. Furthermore, the RMC-based magnetometer is constructed on an optical chip, which takes advantages of remarkable low-field sensitivity over a broad range of frequencies, representing a prototype of emerging opto-spintronic molecular devices.

4.
Cancer Rep (Hoboken) ; 7(3): e2050, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38517478

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is widely recognized as a globally prevalent malignancy. Immunotherapy is a promising therapy for HCC patients. Increasing evidence suggests that lncRNAs are involved in HCC progression and immunotherapy. AIM: The study reveals the mechanistic role of long non-coding RNA (lncRNA) FOXD1-AS1 in regulating migration, invasion, circulating tumor cells (CTCs), epithelial-mesenchymal transition (EMT), and immune escape in HCC in vitro. METHODS: This study employed real-time PCR (RT-qPCR) to measure FOXD1-AS1, miR-615-3p, and programmed death-ligand 1 (PD-L1). The interactions of FOXD1-AS1, miR-615-3p, and PD-L1 were validated via dual-luciferase reporter gene and ribonucleoprotein immunoprecipitation (RIP) assay. In vivo experimentation involves BALB/c mice and BALB/c nude mice to investigate the impact of HCC metastasis. RESULTS: The upregulation of lncRNA FOXD1-AS1 in malignant tissues significantly correlates with poor prognosis. The investigation was implemented on the impact of lncRNA FOXD1-AS1 on the migratory, invasive, and EMT of HCC cells. It has been observed that the lncRNA FOXD1-AS1 significantly influences the generation and metastasis of MCTC in vivo analysis. In mechanistic analysis, lncRNA FOXD1-AS1 enhanced immune escape in HCC via upregulation of PD-L1, which acted as a ceRNA by sequestering miR-615-3p. Additionally, lncRNA FOXD1-AS1 was found to modulate the EMT of CTCs through the activation of the PI3K/AKT pathway. CONCLUSION: This study presents compelling evidence supporting the role of lncRNA FOXD1-AS1 as a miRNA sponge that sequesters miR-655-3p and protects PD-L1 from suppression.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Animals , Mice , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/genetics , Liver Neoplasms/therapy , B7-H1 Antigen/genetics , Phosphatidylinositol 3-Kinases/genetics , RNA, Long Noncoding/genetics , Mice, Nude , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Epithelial-Mesenchymal Transition/genetics , Forkhead Transcription Factors/genetics
5.
Phytomedicine ; 128: 155492, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38479258

ABSTRACT

BACKGROUND: The damage of chemotherapy drugs to immune function and intestinal mucosa is a common side effect during chemotherapy. Astragalus polysaccharides (APS) exhibit immunomodulatory properties and are recognized for preserving the integrity of the human intestinal barrier. Nevertheless, their application and mechanisms of action in chemotherapy-induced immune damage and intestinal barrier disruption remain insufficiently explored. PURPOSE: This study delved into investigating how APS mitigates chemotherapy-induced immune dysfunction and intestinal mucosal injury, while also providing deeper insights into the underlying mechanisms. METHODS: In a chemotherapy mice model induced by 5-fluorouracil (5-Fu), the assessment of APS's efficacy encompassed evaluations of immune organ weight, body weight, colon length, and histopathology. The regulation of different immune cells in spleen was detected by flow cytometry. 16S rRNA gene sequencings, ex vivo microbiome assay, fecal microbiota transplantation (FMT), and targeted metabolomics analysis were applied to explore the mechanisms of APS effected on chemotherapy-induced mice. RESULTS: APS ameliorated chemotherapy-induced damage to immune organs and regulated immune cell differentiation disorders, including CD4+T, CD8+T, CD19+B, F4/80+CD11B+ macrophages. APS also alleviated colon shortening and upregulated the expression of intestinal barrier proteins. Furthermore, APS significantly restored structure of gut microbiota following chemotherapy intervention. Ex vivo microbiome assays further demonstrated the capacity of APS to improve 5-Fu-induced microbiota growth inhibition and compositional change. FMT demonstrated that the regulation of gut microbiota by APS could promote the recovery of immune functions and alleviate shortening of the colon length. Remarkably, APS significantly ameliorated the imbalance of linoleic acid (LA) and α-linolenic acid in polyunsaturated fatty acid (PUFA) metabolism. Further in vitro experiments showed that LA could promote splenic lymphocyte proliferation. In addition, both LA and DGLA down-regulated the secretion of NO and partially up-regulated the percentage of F4/80+CD11B+CD206+ cells. CONCLUSION: APS can effectively ameliorate chemotherapy-induced immune damage and intestinal mucosal disruption by regulating the composition of the gut microbiota and further restoring PUFA metabolism. These findings indicate that APS can serve as an adjuvant to improve the side effects such as intestinal and immune damage caused by chemotherapy.


Subject(s)
Astragalus Plant , Fatty Acids, Unsaturated , Fluorouracil , Gastrointestinal Microbiome , Polysaccharides , Animals , Gastrointestinal Microbiome/drug effects , Polysaccharides/pharmacology , Mice , Astragalus Plant/chemistry , Fatty Acids, Unsaturated/pharmacology , Intestinal Mucosa/drug effects , Male , Mice, Inbred C57BL , Spleen/drug effects , Fecal Microbiota Transplantation , Colon/drug effects
6.
Cell Rep Med ; 5(3): 101477, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508143

ABSTRACT

Metabolic (dysfunction)-associated steatohepatitis (MASH) is the advanced stage of metabolic (dysfunction)-associated fatty liver disease (MAFLD) lacking approved clinical drugs. Adenosine A1 receptor (A1R), belonging to the G-protein-coupled receptors (GPCRs) superfamily, is mainly distributed in the central nervous system and major peripheral organs with wide-ranging physiological functions; however, the exact role of hepatic A1R in MAFLD remains unclear. Here, we report that liver-specific depletion of A1R aggravates while overexpression attenuates diet-induced metabolic-associated fatty liver (MAFL)/MASH in mice. Mechanistically, activation of hepatic A1R promotes the competitive binding of sterol-regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) to sequestosome 1 (SQSTM1), rather than protein kinase A (PKA) leading to SCAP degradation in lysosomes. Reduced SCAP hinders SREBP1c/2 maturation and thus suppresses de novo lipogenesis and inflammation. Higher hepatic A1R expression is observed in patients with MAFL/MASH and high-fat diet (HFD)-fed mice, which is supposed to be a physiologically adaptive response because A1R agonists attenuate MAFL/MASH in an A1R-dependent manner. These results highlight that hepatic A1R is a potential target for MAFL/MASH therapy.


Subject(s)
Fatty Liver , Receptor, Adenosine A1 , Humans , Mice , Animals , Receptor, Adenosine A1/genetics , Receptor, Adenosine A1/metabolism , Fatty Liver/drug therapy , Lipogenesis/genetics , Diet, High-Fat/adverse effects
7.
J Agric Food Chem ; 72(1): 230-244, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38079533

ABSTRACT

A high calorie diet such as excessive fat and sucrose intake is always accompanied by impaired glucose homeostasis such as T2DM (type 2 diabetes mellitus). However, it remains unclear how fat and sucrose individually affect host glucose metabolism. In this study, mice were fed with high fat diet (HFD) or 30% sucrose in drinking water (HSD) for 24 weeks, and glucose metabolism, gut microbiota composition, as well as bile acid (BA) profile were investigated. In addition, the functional changes of HFD or HSD-induced gut microbiota were further verified by fecal microbiota transplantation (FMT) and ex vivo culture of gut bacteria with BAs. Our results showed that both HFD and HSD caused dysregulated lipid metabolism, while HFD feeding had a more severe effect on impaired glucose homeostasis, accompanied by reduced hyocholic acid (HCA) levels in all studied tissues. Meanwhile, HFD had a more dramatic influence on composition and function of gut microbiota based on α diversity indices, ß diversity analysis, as well as the abundance of secondary BA producers than HSD. In addition, the phenotypes of impaired glucose homeostasis and less formation of HCA caused by HFD can be transferred to recipient mice by FMT. Ex vivo culture with gut bacteria and BAs revealed HFD-altered gut bacteria produced less HCA than HSD, which might closely associate with reduced relative abundance of C7 epimerase-coding bacteria g_norank/unclassified_f_Eggerthellaceae and bile salt hydrolase-producing bacteria Lactobacillus and Bifidobacterium in HFD group. Our findings revealed that the divergent effects of different high-calorie diets on glucose metabolism may be due to the gut microbiota-mediated generation and metabolism of BAs, highlighting the importance of dietary management in T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Animals , Mice , Diet, High-Fat/adverse effects , Sucrose , Lipid Metabolism , Glucose/pharmacology , Homeostasis , Bile Acids and Salts/pharmacology , Mice, Inbred C57BL
8.
Nat Commun ; 14(1): 5451, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673856

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is usually characterized with disrupted bile acid (BA) homeostasis. However, the exact role of certain BA in NAFLD is poorly understood. Here we show levels of serum hyodeoxycholic acid (HDCA) decrease in both NAFLD patients and mice, as well as in liver and intestinal contents of NAFLD mice compared to their healthy counterparts. Serum HDCA is also inversely correlated with NAFLD severity. Dietary HDCA supplementation ameliorates diet-induced NAFLD in male wild type mice by activating fatty acid oxidation in hepatic peroxisome proliferator-activated receptor α (PPARα)-dependent way because the anti-NAFLD effect of HDCA is abolished in hepatocyte-specific Pparα knockout mice. Mechanistically, HDCA facilitates nuclear localization of PPARα by directly interacting with RAN protein. This interaction disrupts the formation of RAN/CRM1/PPARα nucleus-cytoplasm shuttling heterotrimer. Our results demonstrate the therapeutic potential of HDCA for NAFLD and provide new insights of BAs on regulating fatty acid metabolism.


Subject(s)
Non-alcoholic Fatty Liver Disease , Male , Animals , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , PPAR alpha/genetics , Bile Acids and Salts , Cytoplasm , Mice, Knockout , Fatty Acids
9.
ISME Commun ; 3(1): 38, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37185811

ABSTRACT

The inter-individual variations of gut microbiome contribute to the different responses toward drug therapy among populations, developing a reliable ex vivo culture method for mixed bacteria is the urgent need for predicting personal reaction to drug therapy. Unfortunately, very few attentions have been paid to the bias that could be introduced during the culture process for mixed bacteria. Here we systemically evaluated the factors that may affect the outcomes of cultured bacteria from human feces. We demonstrated that inter-individual difference of host gut microbiome was the main factor affecting the outcomes of cultured bacteria, followed by the culture medium and time point. We further optimized a new medium termed GB based on our established multi-dimensional evaluation method, which could mimic the status of in situ host gut microbiome to the highest extent. Finally, we assessed the inter-individual metabolism by host gut microbiome from 10 donors on three frequently used clinical drugs (aspirin, levodopa and doxifluridine) based on the optimized GB medium. Our results revealed obvious variation in drug metabolism by microbiome from different donors, especially levodopa and doxifluridine. This work suggested the optimized culture medium had the potential for exploring the inter-individual impacts of host gut microbiome on drug metabolism.

10.
Angew Chem Int Ed Engl ; 62(20): e202300962, 2023 May 08.
Article in English | MEDLINE | ID: mdl-36917738

ABSTRACT

Nickel-rich (Ni≥90 %) layered cathodes are critical materials for achieving higher-energy-density and lower-cost next-generation Li-ion batteries (LIBs). However, their bulk and interface structural instabilities significantly impair their electrochemical performance, thus hindering their widespread adoption in commercial LIBs. Exploiting Ti and Mo diffusion chemistry, we report one-step calcination to synthesize bulk-to-surface modified LiNi0.9 Co0.09 Mo0.01 O2 (NCMo90) featuring a 5 nm Li2 TiO3 coating on the surface, a Mo-rich Li+ /Ni2+ superlattice at the sub-surface, and Ti-doping in the bulk. Such a multi-functional structure effectively maintains its structural integrity upon cycling. As a result, such NCMo90 exhibits a high initial capacity of 221 mAh g-1 at 0.1 C, excellent rate performance (184 mAh g-1 at 5 C), and high capacity retention of 94.0 % after 500 cycles. This work opens a new avenue to developing industry-applicable Ni-rich cathodes for next-generation LIBs.

11.
Pharmacol Res ; 189: 106687, 2023 03.
Article in English | MEDLINE | ID: mdl-36746362

ABSTRACT

Accumulating evidence indicates gut microbiota contributes to aging-related disorders. However, the exact mechanism underlying gut dysbiosis-related pathophysiological changes during aging remains largely unclear. In the current study, we first performed gut microbiota remodeling on old mice by fecal microbiota transplantation (FMT) from young mice, and then characterized the bacteria signature that was specifically altered by FMT. Our results revealed that FMT significantly improved natural aging-related systemic disorders, particularly exerted hepatoprotective effects, and improved glucose sensitivity, hepatosplenomegaly, inflammaging, antioxidative capacity and intestinal barrier. Moreover, FMT particularly increased the abundance of fecal A.muciniphila, which was almost nondetectable in old mice. Interestingly, A.muciniphila supplementation also exerted similar benefits with FMT on old mice. Notably, targeted metabolomics on short chain fatty acids (SCFAs) revealed that only acetic acid was consistently reversed by FMT. Then, acetic acid intervention exerted beneficial actions on both Caenorhabditis elegans and natural aging mice. In conclusion, our current study demonstrated that gut microbiota remodeling improved natural aging-related disorders through A.muciniphila and its derived acetic acid, suggesting that interventions with potent stimulative capacity on A. muciniphila growth and production of acetic acid was alternative and effective way to maintain healthy aging. DATA AVAILABILITY STATEMENT: The data of RNAseq and 16 S rRNA gene sequencing can be accessed in NCBI with the accession number PRJNA848996 and PRJNA849355.


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , Gastrointestinal Microbiome/genetics , Acetic Acid , Verrucomicrobia/genetics , Fecal Microbiota Transplantation/methods
12.
Microbiol Spectr ; 10(6): e0246722, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36354350

ABSTRACT

Growing evidence indicates an association between gut dysbiosis and coronary artery disease (CAD). However, the underlying mechanisms relevant to stable CAD (SCAD) pathogenesis, based on microbe-host metabolism interactions, are poorly explored. Here, we constructed a quasi-paired cohort based on the metabolic background of metagenomic samples by the propensity score matching (PSM) principle. Compared to healthy controls (HCs), gut microbiome disturbances were observed in SCAD patients, accompanied by differences in serum metabolome, mainly including elevated acylcarnitine and decreased unsaturated fatty acids in SCAD patients, which implicated the reduced cardiac fatty acid oxidation. Moreover, we identified Ralstonia pickettii as the core strain responsible for impaired microbial homeostasis in SCAD patientsm and may be partly responsible for the decrease of host unsaturated fatty acid levels. These findings highlight the importance of unsaturated fatty acids, R. pickettii, and their interaction in the pathogenesis of SCAD. IMPORTANCE Stable coronary artery disease (SCAD) is an early stage of CAD development. It is important to understand the pathogenesis of SCAD and find out the possible prevention and control targets for delaying the progression of CAD. We observed reduced levels of unsaturated fatty acids (USFAs) in SCAD patients. However, the reduced USFAs may be related to Ralstonia Pickettii, which was the core strain responsible for the impaired gut microbial function in SCAD patients, and further affected the host's cardiovascular health by altering amino acids, vitamin B metabolism, and LPS biosynthesis. These findings not only emphasized the importance of USFAs for cardiovascular health, but also R. Pickettii for maintaining microbial function homeostasis. More importantly, our study revealed, for the first time, that enriched R. Pickettii might be responsible for the reduced USFAs in SCAD patients, which adds new evidence on the role of altered gut microbiota for SCAD formation.


Subject(s)
Coronary Artery Disease , Gastrointestinal Microbiome , Humans , Metabolome , Metagenomics , Lipid Metabolism
13.
Transl Cancer Res ; 11(9): 3080-3091, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36237265

ABSTRACT

Background: Hypoxia-inducible factor 1-alpha (HIF-1α) is overexpressed in pancreatic ductal adenocarcinomas (PDACs). However, the prognosis of high expression of HIF-1α in PDACs remains controversial because of lacking a solid support. A meta-analysis may help for a better understanding of the role of HIF-1α in the prognosis of PDACs. Methods: By using a systematic approach, we conducted a meta-analysis from current literature. We performed an advanced search in PubMed, Embase, Cochrane Library and Web of Science databases. Recorded studies were published between September 1, 2001, and February 26, 2021, in English and related to the expression of HIF-1α in PDAC. We pooled and combined hazard ratios (HRs) and 95% confidence intervals (CIs) to show the effect of HIF-1α expression on overall survival (OS). We pooled also risk ratios (RRs) and 95% CIs to assess the correlation between HIF-1α expression and clinicopathological characteristics in PDAC. We evaluated publication bias among included studies through the Begg's test and Egger's test. From "Expression Plots" modules in the Gene Expression Profiling Interactive Analysis (GEPIA) database, we showed the difference of mRNA level for HIF1A between 179 pancreatic adenocarcinomas (PAADs) and 171 normal pancreatic tissues. Results: This meta-analysis included 11 studies and 764 patients. High expression of HIF-1α was associated with shorter OS compared to low HIF-1α expression in PDAC (HR =1.74, 95% CI: 1.49-2.04, P<0.001). Patients with high expression of HIF-1α tended to have an increased risk of earlier lymph node metastasis (LNM) (RR =1.63, 95% CI: 1.36-1.95, P<0.001), and more advanced clinical stage (RR =1.64, 95% CI: 1.38-1.97, P<0.001) compared to those with low HIF-1α expression. Expression plots from GEPIA database showed HIF1A overexpressed in PDAC tissues compared to normal tissues (Log2FC =2, P<0.01). Conclusions: High HIF-1α expression associated with worse prognosis of PDACs compared to low HIF-1α expression. Since HIF-1α expression is greater in PDAC than normal pancreas, it could serve as a prognostic factor and potential therapeutic target. However, due to the complex role of HIF-1α in physiology and pathology, therapeutic intervention should be considered with caution.

14.
IEEE Trans Neural Netw Learn Syst ; 33(8): 4069-4083, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33587711

ABSTRACT

The field-programmable gate array (FPGA)-based CNN hardware accelerator adopting single-computing-engine (CE) architecture or multi-CE architecture has attracted great attention in recent years. The actual throughput of the accelerator is also getting higher and higher but is still far below the theoretical throughput due to the inefficient computing resource mapping mechanism and data supply problem, and so on. To solve these problems, a novel composite hardware CNN accelerator architecture is proposed in this article. To perform the convolution layer (CL) efficiently, a novel multiCE architecture based on a row-level pipelined streaming strategy is proposed. For each CE, an optimized mapping mechanism is proposed to improve its computing resource utilization ratio and an efficient data system with continuous data supply is designed to avoid the idle state of the CE. Besides, to relieve the off-chip bandwidth stress, a weight data allocation strategy is proposed. To perform the fully connected layer (FCL), a single-CE architecture based on a batch-based computing method is proposed. Based on these design methods and strategies, visual geometry group network-16 (VGG-16) and ResNet-101 are both implemented on the XC7VX980T FPGA platform. The VGG-16 accelerator consumed 3395 multipliers and got the throughput of 1 TOPS at 150 MHz, that is, about 98.15% of the theoretical throughput ( 2 ×3395 ×150 MOPS). Similarly, the ResNet-101 accelerator achieved 600 GOPS at 100 MHz, about 96.12% of the theoretical throughput ( 2 ×3121 ×100 MOPS).

16.
J Cancer ; 10(23): 5614-5621, 2019.
Article in English | MEDLINE | ID: mdl-31737097

ABSTRACT

Objectives: To evaluate the prognostic significance of Adult Comorbidity Evaluation-27 (ACE-27) for elderly patients (age ≥70 years) with locoregionally advanced nasopharyngeal carcinoma (NPC) treated with Intensity-Modulated Radiotherapy (IMRT), with or without chemotherapy. Methods: 206 elderly patients with locoregionally advanced NPC treated from December 2006 to December 2016 were involved into analysis as the training cohort. Besides, a separate cohort of 72 patients from the same cancer center collected between January 2003 and October 2006 served as the validation cohort. By using propensity score matching (PSM), we created a balanced cohort by matching patients who received chemoradiotherapy with patients who received IMRT alone. Treatment toxicities were calculated between CRT and RT groups using the χ2 test. The primary endpoint was cancer-specific survival (CSS). Multivariate analysis was performed to assess the relative risk for each factor by using a Cox's proportional hazards regression model. Results: The median follow-up was 39.0 months (range = 3-137 months). In the PSM cohort, patients in the CRT group achieved comparable survival compared with patients in the RT group. The 3-year CSS rate was 64.3% and 65.2%, respectively (P =0.764). In multivariate analysis, the addition of chemotherapy to IMRT was not an independent prognostic factor for CSS, whereas a high ACE-27 score was an independent risk factor. In subgroup analysis with ACE-27 score ≥ 2, the 3-year CSS rate was worse in patients from the CRT group (63.5% vs. 46.3%, P = 0.041). Conclusions: CRT is comparable to IMRT alone for elderly patients with locoregionally advanced NPC. The ACE-27 tool may help to identify high-risk subgroup for poor disease outcome and tailor individualized treatment.

17.
Aging (Albany NY) ; 11(11): 3432-3444, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31163018

ABSTRACT

In recent years, a growing body of evidence has provided support for the important role of microRNAs (miRNAs) in the progression of human cancers. A recent study showed that a novel miRNA miR-3650 expression was significantly decreased in hepatocellular carcinoma (HCC). However, the precise role of miR-3650 in HCC have remained poorly understood. In this study, we found that miR-3650 expression was frequently decreased in HCC tissues. Low expression of miR-3650 is positively associated with tumor metastasis and poor survival of HCC patients. Forced expression of miR-3650 significantly inhibited the migration and epithelial-mesenchymal transition (EMT) of HCC cells. Through bioinformatic analysis and luciferase assays, we confirmed that neurofascin (NFASC) is a directly target mRNA of miR-3650. Rescue experiment demonstrated that NAFSC overexpression could partially counteracted the inhibitory effect of miR-3650 in HCC metastasis and EMT. In conclusion, our findings are the first time to demonstrate that reduced expression of miR-3650 in HCC was correlated with tumor metastasis and poor survival. MiR-3650 repressed HCC migration and EMT by directly targeting NFASC. Our findings suggested that miR-3650 may serve as a potential prognostic marker and promising application in HCC therapy.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Cell Adhesion Molecules/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/metabolism , MicroRNAs/metabolism , Neoplasm Metastasis/genetics , Nerve Growth Factors/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Adhesion Molecules/genetics , Cell Movement/genetics , Disease Progression , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , MicroRNAs/genetics , Middle Aged , Neoplasm Metastasis/pathology , Nerve Growth Factors/genetics
18.
Exp Ther Med ; 17(5): 3525-3529, 2019 May.
Article in English | MEDLINE | ID: mdl-30988733

ABSTRACT

Bergenin is a secondary metabolite that may be primarily isolated from Bergenia species. Although it has been found to exhibit significant biological activities, the anticancer activity of bergenin against cervical cancer cells has not been explored. The present study was designed to evaluate the anticancer effects of bergenin on HeLa cervical cancer cells. The results showed that bergenin reduced the cell viability of the HeLa cervical cancer cells in a dose-dependent pattern. However, the anticancer effects of bergenin were found to be comparatively lower on the normal cervical cells. Furthermore, the anticancer effects of bergenin were primarily found to be due to induction of apoptosis in the HeLa cervical cancer cells. Notably, bergenin also enhanced the expression of Bax and decreased the expression of Bcl-2. WThe effect of bergenin on cell cycle phase distribution of HeLa cells was also investigated and it was found that bergenin could induce G0/G1 cell cycle arrest. Furthermore, bergenin could also inhibit the migration of HeLa cancer cells as well as the phosphorylation of STAT3. Taken together, bergenin may be a promising candidate for the management of cervical cancer.

19.
PLoS One ; 13(10): e0204334, 2018.
Article in English | MEDLINE | ID: mdl-30303986

ABSTRACT

OBJECTIVE: To evaluate the prognostic effects of combining serum circulating tumor cells (CTCs) and squamous cell carcinoma antigen (SCC-Ag) levels on patients with locally advanced cervical cancer treated with radiotherapy. METHODS: Ninety-nine patients with locally advanced cervical cancer ([FIGO] stage IIB-IVA) undergoing radiotherapy (RT) or concurrent chemoradiotherapy (CCRT) were identified. The association between serum CTC level and clinicopathological parameters was examined. Univariate and multivariate survival analyses were performed by using Cox's proportional hazards regression model. RESULTS: Elevated CTC and SCC-Ag levels were significantly associated with poor disease-free survival (DFS). Multivariate analysis suggest that serum CTC level, FIGO stage and serum SCC-Ag level were independent prognostic factors for two-year DFS. When CTC and SCC-Ag levels were combined into a new risk model to predict disease progression of cervical cancer patients, it performed a significantly better predictive efficiency compared with either biomarker alone. CONCLUSION: Serum CTC and SCC-Ag levels are potentially useful biomarkers for prediction of prognosis in locally advanced cervical cancer patients and their combination significantly improves predictive ability for survival in locally advanced cervical cancer patients.


Subject(s)
Antigens, Neoplasm/blood , Neoplastic Cells, Circulating , Serpins/blood , Uterine Cervical Neoplasms/blood , Uterine Cervical Neoplasms/radiotherapy , Adult , Biomarkers, Tumor/blood , Chemoradiotherapy , Disease Progression , Disease-Free Survival , Female , Follow-Up Studies , Humans , Middle Aged , Prognosis , Retrospective Studies , Risk Factors , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology
20.
PLoS One ; 12(2): e0172345, 2017.
Article in English | MEDLINE | ID: mdl-28241022

ABSTRACT

BACKGROUND: Gamma-glutamyltransferase (GGT) is a membrane-bound enzyme involved in the metabolism of glutathione. Studies suggested that GGT played an important role in the tumor development, progression, invasion and drug resistance and prognosis. The association between GGT and prognosis of patients with nasopharyngeal carcinoma (NPC) was unknown. This study was conducted to investigate the association of pretherapeutic serum level of GGT with clinical-pathological parameters and survival in patients with NPC. METHODS: Two hundred and twenty-two patients with NPC were recruited in this study and were stratified into two GGT risk groups (≤ 34.5 U/L, > 34.5 U/L). The association of pretherapeutic serum GGT levels with clinical-pathological parameters was examined. Univariate and multivariate survival analyses were performed. FINDINGS: The pretherapeutic serum level of GGT was not associated with gender, age, pathology, T stage, N stage, TNM stage, chemotherapy or radiotherapy in patients with NPC. Patients in the high-risk GGT group had a poorer survival than the low-risk GGT group (3-year overall survival, 74.2% vs. 50.2%, P = 0.001; 3-year progression-free survival, 76.4% vs. 47.1%, P < 0.001; 3-year loco-regional relapse-free survival, 76.4% vs. 51.3%, P < 0.001; 3-year distant metastasis-free survival, 89.5% vs. 66.4%, P < 0.001). Multivariate analysis suggested that patients in the high-risk GGT group had 2.117 (95% confidence interval [CI], 1.225 ∼ 3.659, P = 0.007) times the risk of death, 2.836 (95% CI, 1.765 ∼ 4.557, P < 0.001) times the risk of progression, 2.551 (95% CI, 1.573 ∼ 4.138, P < 0.001) times the risk of relapse, and 3.331 (95% CI, 1.676 ∼ 6.622, P < 0.001) times the risk of metastasis compared with those in the low-risk GGT group. CONCLUSION: The pretherapeutic serum level of GGT might serve as a novel independent prognostic factor for overall-survival, progression-free survival, loco-regional relapse-free survival and distant metastasis-free survival in patients with NPC.


Subject(s)
Carcinoma/diagnosis , Liver Neoplasms/diagnosis , Nasopharyngeal Neoplasms/diagnosis , gamma-Glutamyltransferase/blood , Adult , Carcinoma/enzymology , Disease Progression , Disease-Free Survival , Drug Resistance, Neoplasm , Female , Humans , Kaplan-Meier Estimate , Liver Neoplasms/enzymology , Magnetic Resonance Imaging , Male , Middle Aged , Multivariate Analysis , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/enzymology , Neoplasm Metastasis , Neoplasm Recurrence, Local/pathology , Prognosis , ROC Curve , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...