Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(32): 13224-13232, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37492006

ABSTRACT

Optical skyrmions have recently attracted growing interest due to their potential applications in deep-subwavelength imaging and nanometrology. While optical skyrmions have been successfully demonstrated using different field vectors, the study of their generation and control, as well as their general correlation with electromagnetic (EM) fields, is still in its infancy. Here, we theoretically propose that evanescent transverse-magnetic-polarized (TM-polarized) EM fields with rotational symmetry are actually Néel-type optical target skyrmions of the electric field vectors. Such optical target skyrmions are independent of the operation frequency and medium. Our proposal was verified by numerical simulations and real-space nano-imaging experiments performed on a graphene monolayer, where the target skyrmions could be as small as ∼100 nm in diameter. The results can therefore not only further our understanding of the formation mechanisms of EM topological textures, but also provide guidelines for the facile construction of EM skyrmions that may impact future information technologies.

2.
Nat Commun ; 14(1): 2716, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37169788

ABSTRACT

One of the main bottlenecks in the development of terahertz (THz) and long-wave infrared (LWIR) technologies is the limited intrinsic response of traditional materials. Hyperbolic phonon polaritons (HPhPs) of van der Waals semiconductors couple strongly with THz and LWIR radiation. However, the mismatch of photon - polariton momentum makes far-field excitation of HPhPs challenging. Here, we propose an In-Plane Hyperbolic Polariton Tuner that is based on patterning van der Waals semiconductors, here α-MoO3, into ribbon arrays. We demonstrate that such tuners respond directly to far-field excitation and give rise to LWIR and THz resonances with high quality factors up to 300, which are strongly dependent on in-plane hyperbolic polariton of the patterned α-MoO3. We further show that with this tuner, intensity regulation of reflected and transmitted electromagnetic waves, as well as their wavelength and polarization selection can be achieved. Our results can help the development of THz and LWIR miniaturized devices.

3.
Adv Mater ; 34(6): e2104164, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34791711

ABSTRACT

Hyperbolic phonon polaritons (HPhPs) sustained in polar van der Waals (vdW) crystals exhibit extraordinary confinement of long-wave electromagnetic fields to the deep subwavelength scale. In stark contrast to uniaxial vdW hyperbolic materials, recently emerged biaxial hyperbolic materials, such as α-MoO3 and α-V2 O5 , offer new degrees of freedom for controlling light in two-dimensions due to their distinctive in-plane hyperbolic dispersions. However, the control and focusing of these in-plane HPhPs remain elusive. Here, a versatile technique is proposed for launching, controlling, and focusing in-plane HPhPs in α-MoO3 with geometrically designed curved gold plasmonic antennas. It is found that the subwavelength manipulation and focusing behaviors are strongly dependent on the curvature of the antenna extremity. This strategy operates effectively in a broadband spectral region. These findings not only provide fundamental insights into the manipulation of light by biaxial hyperbolic crystals at the nanoscale but also open up new opportunities for planar nanophotonic applications.

4.
Nanoscale ; 13(9): 4845-4854, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33624648

ABSTRACT

Two-dimensional van der Waals (vdW) crystals can sustain various types of polaritons with strong electromagnetic confinements, making them highly attractive for nanoscale photonic and optoelectronic applications. While extensive experimental and numerical studies have been devoted to the polaritons of the vdW crystals, analytical models are sparse. Particularly, applying the model to describe polariton behaviors that are visualized by state of the art near-field optical microscopy requires further investigations. In this study, we develop an analytical waveguide model to describe polariton propagations in vdW crystals. The dispersion contours, dispersion relations, and localized electromagnetic field distributions of polariton waveguide modes are derived. The model is verified by real-space optical nano-imaging and numerical simulation of phonon polaritons in α-MoO3, which is a vdW biaxial crystal. Although we focus on α-MoO3, the proposed model is valid for other polaritonic crystals within the vdW family given the corresponding dielectric substitutions. Our model therefore provides an analytical rationale for describing and understanding the localized electromagnetic fields in vdW crystals that are associated with polaritons.

5.
ACS Appl Mater Interfaces ; 12(39): 44067-44073, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32901478

ABSTRACT

The enhancement of electron-phonon interaction provides a reasonable explanation for gate-tunable phonon properties in some semiconductors where multiple inequivalent valleys are simultaneously occupied upon charge doping, especially in few-layer transition metal dichalcogenides (TMDs). In this work, we report var der Waals epitaxy of 2H-MoSe2 by molecular beam epitaxy (MBE) and gate-tunable phonon properties in monolayer and bilayer MoSe2. In monolayer MoSe2, we find that out-of-plane phonon mode A1g exhibits a strong softening and shifting toward lower wavenumbers at a high electron doping level, while in-plane phonon mode E2g1 remains unchanged. The softening and shifting of the out-of-plane phonon mode could be attributed to the increase of electron-phonon interaction and the simultaneous occupation of electrons in multiple inequivalent valleys. In bilayer MoSe2, no corresponding changes of phonon modes are detected at the same doping level, which could originate from the occupation of electrons only in single valleys upon high electron doping. This study demonstrates electrostatically enhanced electron-phonon interaction in monolayer MoSe2 and clarifies the relevance between occupation of multiple valleys and phonon properties by comparing Raman spectra of monolayer and bilayer MoSe2 at different doping levels.

6.
Nano Lett ; 20(7): 5301-5308, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32574060

ABSTRACT

Controlling the twist angle between two stacked van der Waals (vdW) crystals is a powerful approach for tuning their electronic and photonic properties. Hyperbolic media have recently attracted much attention due to their ability to tailor electromagnetic waves at the subwavelength-scale which, however, usually requires complex patterning procedures. Here, we demonstrate a lithography-free approach for manipulating the hyperbolicity by harnessing the twist-dependent coupling of phonon polaritons in double-layers of vdW α-MoO3, a naturally biaxial hyperbolic crystal. The polariton isofrequency contours can be modified due to this interlayer coupling, allowing for controlling the polaritonic characteristics by adjusting the orientation angles between the two layers. Our findings provide opportunities for control of nanoscale light flow with twisted stacks of vdW crystals.

7.
ACS Appl Mater Interfaces ; 12(21): 24218-24230, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32374587

ABSTRACT

Specific geometric morphology and improved crystalline properties are of great significance for the development of materials in micro-nano scale. However, for high-melting molybdenum (Mo), it is difficult to get high-quality structures exhibiting a single-crystalline nature and preconceived morphology simultaneously. In this paper, a pyramid-shaped single-crystalline Mo nanostructure was prepared through a thermal evaporation technique, as well as a series of experimental controls. Based on detailed characterizations, the growth mechanism was demonstrated to follow a sequential process that includes MoO2 decomposition and Mo deposition, single-crystalline islands formation, layered nucleation, and competitive growth. Furthermore, the product was measured to show excellent physical properties. The prepared nanostructures exhibited strong nano-indentation hardness, elastic modulus, and tensile strength in mechanical measurements, which are much higher than those of the Mo bulks. In the measurement of electronic characteristics, the individual structures indicated very good electrical transport properties, with a conductance of ∼0.16 S. The prepared film with an area of 0.02 cm2 showed large-current electron emission properties with a maximum current of 33.6 mA and a current density of 1.68 A cm-2. Optical properties of the structures were measured to show obvious electromagnetic field localization and enhancement, which enabled it to have good surface enhanced Raman scattering (SERS) activity as a substrate material. The corresponding structure-response relationships were further discussed. The reported physical properties profit from the basic features of the Mo nanostructures, including the micro-nano scale, the single-crystalline nature in each grain, as well as the pyramid-shaped top morphology. The findings may provide a potential material for the research and application of micro-nano electrons and photons.

8.
Sci Adv ; 5(5): eaav8690, 2019 May.
Article in English | MEDLINE | ID: mdl-31139747

ABSTRACT

Hyperbolic media have attracted much attention in the photonics community due to their ability to confine light to arbitrarily small volumes and their potential applications to super-resolution technologies. The two-dimensional counterparts of these media can be achieved with hyperbolic metasurfaces that support in-plane hyperbolic guided modes upon nanopatterning, which, however, poses notable fabrication challenges and limits the achievable confinement. We show that thin flakes of a van der Waals crystal, α-MoO3, can support naturally in-plane hyperbolic polariton guided modes at mid-infrared frequencies without the need for patterning. This is possible because α-MoO3 is a biaxial hyperbolic crystal with three different Reststrahlen bands, each corresponding to a different crystalline axis. These findings can pave the way toward a new paradigm to manipulate and confine light in planar photonic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...