Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Structure ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38823379

ABSTRACT

Carboxysomes are large self-assembled microcompartments that serve as the central machinery of a CO2-concentrating mechanism (CCM). Biogenesis of carboxysome requires the fine organization of thousands of individual proteins; however, the packaging pattern of internal RuBisCOs remains largely unknown. Here we purified the intact ß-carboxysomes from Synechococcus elongatus PCC 7942 and identified the protein components by mass spectrometry. Cryo-electron tomography combined with subtomogram averaging revealed the general organization pattern of internal RuBisCOs, in which the adjacent RuBisCOs are mainly arranged in three distinct manners: head-to-head, head-to-side, and side-by-side. The RuBisCOs in the outermost layer are regularly aligned along the shell, the majority of which directly interact with the shell. Moreover, statistical analysis enabled us to propose an ideal packaging model of RuBisCOs in the ß-carboxysome. These results provide new insights into the biogenesis of ß-carboxysomes and also advance our understanding of the efficient carbon fixation functionality of carboxysomes.

2.
Photosynth Res ; 154(3): 397-411, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35974136

ABSTRACT

Clean and sustainable H2 production is crucial to a carbon-neutral world. H2 generation by Chlamydomonas reinhardtii is an attractive approach for solar-H2 from H2O. However, it is currently not large-scalable because of lacking desirable strains with both optimal H2 productivity and sufficient knowledge of underlying molecular mechanism. We hereby carried out extensive and in-depth investigations of H2 photoproduction of hpm91 mutant lacking PGR5 (Proton Gradient Regulation 5) toward its up-scaling and fundamental mechanism issues. We show that hpm91 is at least 100-fold scalable (up to 10 L) with continuous H2 collection of 7287 ml H2/10L-HPBR in averagely 26 days under sulfur deprivation. Also, we show that hpm91 is robust and active during sustained H2 photoproduction, most likely due to decreased intracellular ROS relative to wild type. Moreover, we obtained quantitative proteomic profiles of wild type and hpm91 at four representing time points of H2 evolution, leading to 2229 and 1350 differentially expressed proteins, respectively. Compared to wild type, major proteome alterations of hpm91 include not only core subunits of photosystems and those related to anti-oxidative responses but also essential proteins in photosynthetic antenna, C/N metabolic balance, and sulfur assimilation toward both cysteine biosynthesis and sulfation of metabolites during sulfur-deprived H2 production. These results reveal not only new insights of cellular and molecular basis of enhanced H2 production in hpm91 but also provide additional candidate gene targets and modules for further genetic modifications and/or in artificial photosynthesis mimics toward basic and applied research aiming at advancing solar-H2 technology.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas , Protons , Proteomics , Hydrogen/metabolism , Photosynthesis/physiology , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Sulfur/metabolism
3.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: mdl-33926963

ABSTRACT

Stomata in leaves regulate gas exchange between the plant and its atmosphere. Various environmental stimuli elicit abscisic acid (ABA); ABA leads to phosphoactivation of slow anion channel 1 (SLAC1); SLAC1 activity reduces turgor pressure in aperture-defining guard cells; and stomatal closure ensues. We used electrophysiology for functional characterizations of Arabidopsis thaliana SLAC1 (AtSLAC1) and cryoelectron microscopy (cryo-EM) for structural analysis of Brachypodium distachyon SLAC1 (BdSLAC1), at 2.97-Å resolution. We identified 14 phosphorylation sites in AtSLAC1 and showed nearly 330-fold channel-activity enhancement with 4 to 6 of these phosphorylated. Seven SLAC1-conserved arginines are poised in BdSLAC1 for regulatory interaction with the N-terminal extension. This BdSLAC1 structure has its pores closed, in a basal state, spring loaded by phenylalanyl residues in high-energy conformations. SLAC1 phosphorylation fine-tunes an equilibrium between basal and activated SLAC1 trimers, thereby controlling the degree of stomatal opening.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Membrane Proteins/genetics , Plant Leaves/genetics , Plant Stomata/genetics , Abscisic Acid/metabolism , Anions/metabolism , Arabidopsis/ultrastructure , Arabidopsis Proteins/ultrastructure , Brachypodium/genetics , Brachypodium/ultrastructure , Carbon Dioxide/metabolism , Cryoelectron Microscopy , Ion Transport/genetics , Membrane Proteins/ultrastructure , Phosphorylation/genetics , Plant Leaves/ultrastructure , Plant Stomata/ultrastructure , Protein Conformation , Signal Transduction/genetics
4.
Yi Chuan ; 41(9): 863-874, 2019 Sep 20.
Article in Chinese | MEDLINE | ID: mdl-31549684

ABSTRACT

Membrane proteins play important functions not only as receptors and transporters, but also in many other important intracellular functions such as photosynthetic and respiratory electron transport. Identification of membrane proteins is a necessary step to understand their functions. Membrane proteins are generally highly hydrophobic and difficult to be resolved by aqueous solutions, and large-scale proteomic identification of membrane proteins has been a great technical challenge. Significant efforts have been invested in the field to improve the solubility of membrane proteins in aqueous solutions that are compatible for mass spectrometry analysis. This review summarizes the main technological achievements in the field of membrane proteomics particularly for the improvement of membrane protein identification, and uses the photosynthetic model cyanobacterium Synechocystis sp. PCC6803 as an example to illustrate how technology advances push forward the field in terms of the increased coverage of membrane proteome identification.


Subject(s)
Proteome , Proteomics/trends , Synechocystis/genetics , Bacterial Proteins/genetics , Mass Spectrometry
5.
Plant Mol Biol ; 91(3): 287-304, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26969016

ABSTRACT

Maize is unique since it is both monoecious and diclinous (separate male and female flowers on the same plant). We investigated the proteome and phosphoproteome of maize pollen containing modified proteins and here we provide a comprehensive pollen proteome and phosphoproteome which contain 100,990 peptides from 6750 proteins and 5292 phosphorylated sites corresponding to 2257 maize phosphoproteins, respectively. Interestingly, among the total 27 overrepresented phosphosite motifs we identified here, 11 were novel motifs, which suggested different modification mechanisms in plants compared to those of animals. Enrichment analysis of pollen phosphoproteins showed that pathways including DNA synthesis/chromatin structure, regulation of RNA transcription, protein modification, cell organization, signal transduction, cell cycle, vesicle transport, transport of ions and metabolisms, which were involved in pollen development, the following germination and pollen tube growth, were regulated by phosphorylation. In this study, we also found 430 kinases and 105 phosphatases in the maize pollen phosphoproteome, among which calcium dependent protein kinases (CDPKs), leucine rich repeat kinase, SNF1 related protein kinases and MAPK family proteins were heavily enriched and further analyzed. From our research, we also uncovered hundreds of male sterility-associated proteins and phosphoproteins that might influence maize productivity and serve as targets for hybrid maize seed production. At last, a putative complex signaling pathway involving CDPKs, MAPKs, ubiquitin ligases and multiple fertility proteins was constructed. Overall, our data provides new insight for further investigation of protein phosphorylation status in mature maize pollen and construction of maize male sterile mutants in the future.


Subject(s)
Phosphoproteins/genetics , Plant Proteins/genetics , Pollen/genetics , Proteome/genetics , Zea mays/genetics , Fertility/genetics , Phosphoproteins/physiology , Phosphorylation , Plant Proteins/physiology
6.
Mol Plant ; 4(6): 938-46, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21502661

ABSTRACT

Ubiquitination is an important protein post-translational modification, which is involved in various cellular processes in higher plants, and U-box E3 ligases play important roles in diverse functions in eukaryotes. Here, we describe the functions of Arabidopsis thaliana PUB19 (AtPUB19), which we demonstrated in an in vitro assay to encode a U-box type E3 ubiquitin ligase. AtPUB19 was up-regulated by drought, salt, cold, and abscisic acid (ABA). Down-regulation of AtPUB19 led to hypersensitivity to ABA, enhanced ABA-induced stomatal closing, and enhanced drought tolerance, while AtPUB19 overexpression resulted in the reverse phenotypes. Molecular analysis showed that the expression levels of a number of ABA and stress marker genes were altered in both AtPUB19 overexpressing and atpub19-1 mutant plants. In summary, our data show that AtPUB19 negatively regulates ABA and drought responses in A. thaliana.


Subject(s)
Abscisic Acid/pharmacology , Arabidopsis/enzymology , Arabidopsis/genetics , Droughts , Stress, Physiological/genetics , Ubiquitin-Protein Ligases/metabolism , Arabidopsis/drug effects , Arabidopsis/physiology , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Mutation , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...