Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 96(9): 3960-3969, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38386846

ABSTRACT

A 1D-guided differential rescaling algorithm for a contour plot is developed based on our recently proposed comprehensive two-dimensional gas chromatography (GC × GC) system with a first-dimensional (1D) detector added. Chromatograms obtained from 1D and second-dimensional (2D) detectors are both incorporated during the data processing. As compared to the conventional contour plot methods using only 2D data, our algorithm can significantly improve precision and consistency of GC × GC results in terms of retention times, peak widths, and peak areas or volumes, regardless of modulation time selection, modulation phase shift fluctuations, and modulation duty cycle. The peak identification, quantification, and capacity can therefore be enhanced. Furthermore, the 1D-guided differential rescaling method is shown to better handle the coelution and missing peak issues often encountered in the conventional methods. Finally, the new method exhibits high versatility in 1D and 2D detector selection, which greatly broadens GC × GC utility. Our method can easily be adapted to other two-dimensional chromatography systems that have direct access to 1D chromatograms.

2.
Anal Chem ; 95(22): 8496-8504, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37278057

ABSTRACT

Microfluidic photoionization detectors (µPIDs) based on silicon chips can rapidly and sensitively detect volatile compounds. However, the applications of µPID are limited by the manual assembly process using glue, which may outgas and clog the fluidic channel, and by the short lifetime of the vacuum ultraviolet (VUV) lamps (especially, argon lamps). Here, we developed a gold-gold cold welding-based microfabrication process to integrate ultrathin (10 nm) silica into µPID. The silica coating enables direct bonding of the VUV window to silicon under amicable conditions and works as a moisture and plasma exposure barrier for VUV windows that are susceptible to hygroscopicity and solarization. Detailed characterization of the silica coating was conducted, showing that the 10 nm silica coating allows 40-80% VUV transmission from 8.5 to 11.5 eV. It is further shown that the silica-protected µPID maintained 90% of its original sensitivity after 2200 h of exposure to ambient (dew point = 8.0 ± 1.8 °C), compared to 39% without silica. Furthermore, argon plasma inside an argon VUV lamp was identified as the dominant degradation source for the LiF window with color centers formation in UV-vis and VUV transmission spectra. Ultrathin silica was then also demonstrated effective in protecting the LiF from argon plasma exposure. Lastly, thermal annealing was found to bleach the color centers and restore VUV transmission of degraded LiF windows effectively, which will lead to future development of a new type of VUV lamp and the corresponding µPID (and PID in general) that can be mass produced with a high yield, a longer lifetime, and better regenerability.

3.
JAMA Netw Open ; 6(2): e230982, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36853606

ABSTRACT

Importance: Breath analysis has been explored as a noninvasive means to detect COVID-19. However, the impact of emerging variants of SARS-CoV-2, such as Omicron, on the exhaled breath profile and diagnostic accuracy of breath analysis is unknown. Objective: To evaluate the diagnostic accuracies of breath analysis on detecting patients with COVID-19 when the SARS-CoV-2 Delta and Omicron variants were most prevalent. Design, Setting, and Participants: This diagnostic study included a cohort of patients who had positive and negative test results for COVID-19 using reverse transcriptase polymerase chain reaction between April 2021 and May 2022, which covers the period when the Delta variant was overtaken by Omicron as the major variant. Patients were enrolled through intensive care units and the emergency department at the University of Michigan Health System. Patient breath was analyzed with portable gas chromatography. Main Outcomes and Measures: Different sets of VOC biomarkers were identified that distinguished between COVID-19 (SARS-CoV-2 Delta and Omicron variants) and non-COVID-19 illness. Results: Overall, 205 breath samples from 167 adult patients were analyzed. A total of 77 patients (mean [SD] age, 58.5 [16.1] years; 41 [53.2%] male patients; 13 [16.9%] Black and 59 [76.6%] White patients) had COVID-19, and 91 patients (mean [SD] age, 54.3 [17.1] years; 43 [47.3%] male patients; 11 [12.1%] Black and 76 [83.5%] White patients) had non-COVID-19 illness. Several patients were analyzed over multiple days. Among 94 positive samples, 41 samples were from patients in 2021 infected with the Delta or other variants, and 53 samples were from patients in 2022 infected with the Omicron variant, based on the State of Michigan and US Centers for Disease Control and Prevention surveillance data. Four VOC biomarkers were found to distinguish between COVID-19 (Delta and other 2021 variants) and non-COVID-19 illness with an accuracy of 94.7%. However, accuracy dropped substantially to 82.1% when these biomarkers were applied to the Omicron variant. Four new VOC biomarkers were found to distinguish the Omicron variant and non-COVID-19 illness (accuracy, 90.9%). Breath analysis distinguished Omicron from the earlier variants with an accuracy of 91.5% and COVID-19 (all SARS-CoV-2 variants) vs non-COVID-19 illness with 90.2% accuracy. Conclusions and Relevance: The findings of this diagnostic study suggest that breath analysis has promise for COVID-19 detection. However, similar to rapid antigen testing, the emergence of new variants poses diagnostic challenges. The results of this study warrant additional evaluation on how to overcome these challenges to use breath analysis to improve the diagnosis and care of patients.


Subject(s)
COVID-19 , Volatile Organic Compounds , United States , Adult , Humans , Male , Middle Aged , Female , SARS-CoV-2/genetics , COVID-19/diagnosis , Breath Tests
4.
Microsyst Nanoeng ; 8: 115, 2022.
Article in English | MEDLINE | ID: mdl-36329696

ABSTRACT

Two-dimensional (2D) gas chromatography (GC) provides enhanced vapor separation capabilities in contrast to conventional one-dimensional GC and is useful for the analysis of highly complex chemical samples. We developed a microfabricated flow-restricted pneumatic modulator (FRPM) for portable comprehensive 2D micro-GC (µGC), which enables rapid 2D injection and separation without compromising the 1D separation speed and eluent peak profiles. 2D injection characteristics such as injection peak width and peak height were fully characterized by using flow-through micro-photoionization detectors (µPIDs) at the FRPM inlet and outlet. A 2D injection peak width of ~25 ms could be achieved with a 2D/1D flow rate ratio over 10. The FRPM was further integrated with a 0.5-m long 2D µcolumn on the same chip, and its performance was characterized. Finally, we developed an automated portable comprehensive 2D µGC consisting of a 10 m OV-1 1D µcolumn, an integrated FRPM with a built-in 0.5 m polyethylene glycol 2D µcolumn, and two µPIDs. Rapid separation of 40 volatile organic compounds in ~5 min was demonstrated. A hybrid 2D contour plot was constructed by using both 1D and 2D chromatograms obtained with the two µPIDs at the end of the 1D and 2D µcolumns, which was enabled by the presence of the flow resistor in the FRPM.

5.
Nat Commun ; 12(1): 5419, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34521842

ABSTRACT

Organic photovoltaic cells (OPVs) have the potential of becoming a productive renewable energy technology if the requirements of low cost, high efficiency and prolonged lifetime are simultaneously fulfilled. So far, the remaining unfulfilled promise of this technology is its inadequate operational lifetime. Here, we demonstrate that the instability of NFA solar cells arises primarily from chemical changes at organic/inorganic interfaces bounding the bulk heterojunction active region. Encapsulated devices stabilized by additional protective buffer layers as well as the integration of a simple solution processed ultraviolet filtering layer, maintain 94% of their initial efficiency under simulated, 1 sun intensity, AM1.5 G irradiation for 1900 hours at 55 °C. Accelerated aging is also induced by exposure of light illumination intensities up to 27 suns, and operation temperatures as high as 65 °C. An extrapolated intrinsic lifetime of > 5.6 × 104 h is obtained, which is equivalent to 30 years outdoor exposure.

6.
ACS Appl Mater Interfaces ; 13(37): 44686-44692, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34347436

ABSTRACT

We report a method to neutralize the mid-gap defect states in MoS2 monolayers using laser soaking of an organic/transition metal oxide (TMO) blend thin film. The treated MoS2 monolayer shows negligible emission from defect states as compared to the as-exfoliated MoS2, accompanied by a photoluminescence quantum yield improvement from 0.018 to 4.5% at excitation power densities of 10 W/cm2. The effectiveness of the method toward defect neutralization is governed by the polaron pair generated at the organic/TMO interface, the diffusion of free electrons, and the subsequent formation of TMO radicals at the MoS2 monolayer. The treated monolayers are stable in air, vacuum, and acetone environments, potentially enabling the fabrication of defect-free optoelectronic devices based on 2D materials and 2D/organic heterojunctions.

7.
Nature ; 573(7774): 394-397, 2019 09.
Article in English | MEDLINE | ID: mdl-31501570

ABSTRACT

Organic photovoltaic cells are now approaching commercially viable efficiencies, particularly for applications that make use of their unique potential for flexibility and semitransparency1-3. However, their reliability remains a major concern, as even the most stable devices reported so far degrade within only a few years4-8. This has led to the belief that short operational lifetimes are an intrinsic disadvantage of devices that are fabricated using weakly bonded organic materials-an idea that persists despite the rapid growth and acceptance of organic light-emitting devices, which can achieve lifetimes of several million hours9. Here we study an extremely stable class of thermally evaporated single-junction organic photovoltaic cells. We accelerated the ageing process by exposing the packaged cells to white-light illumination intensities of up to 37 Suns. The cells maintained more than 87 per cent of their starting efficiency after exposure for more than 68 days. The degradation rate increases superlinearly with intensity, leading to an extrapolated intrinsic lifetime, T80, of more than 4.9 × 107 hours, where T80 is the time taken for the power conversion efficiency to decrease to 80 per cent of its initial value. This is equivalent to 27,000 years outdoors. Additionally, we subjected a second group of organic photovoltaic cells to 20 Suns of ultraviolet illumination (centred at 365 nanometres) for 848 hours, a dose that would take 1.7 × 104 hours (9.3 years) to accumulate outdoors. No efficiency loss was observed over the duration of the test. Overall, we find that organic solar cells packaged in an inert atmosphere can be extremely stable, which is promising for their future use as a practical energy-generation technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...