Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 10(3): e2205462, 2023 01.
Article in English | MEDLINE | ID: mdl-36453571

ABSTRACT

Acetylation of extracellular proteins has been observed in many independent studies where particular attention has been given to the dynamic change of the microenvironmental protein post-translational modifications. While extracellular proteins can be acetylated within the cells prior to their micro-environmental distribution, their deacetylation in a tumor microenvironment remains elusive. Here it is described that multiple acetyl-vWA domain-carrying proteins including integrin ß3 (ITGB3) and collagen 6A (COL6A) are deacetylated by Sirtuin family member SIRT2 in extracellular space. SIRT2 is secreted by macrophages following toll-like receptor (TLR) family member TLR4 or TLR2 activation. TLR-activated SIRT2 undergoes autophagosome translocation. TNF receptor associated factor 6 (TRAF6)-mediated autophagy flux in response to TLR2/4 activation can then pump SIRT2 into the microenvironment to function as extracellular SIRT2 (eSIRT2). In the extracellular space, eSIRT2 deacetylates ITGB3 on aK416 involved in cell attachment and migration, leading to a promotion of cancer cell metastasis. In lung cancer patients, significantly increased serum eSIRT2 level correlates with dramatically decreased ITGB3-K416 acetylation in cancer cells. Thus, the extracellular space is a subcellular organelle-like arena where eSIRT2 promotes cancer cell metastasis via catalyzing extracellular protein deacetylation.


Subject(s)
Lung Neoplasms , Sirtuin 2 , Humans , Sirtuin 2/genetics , Sirtuin 2/metabolism , Toll-Like Receptor 2/metabolism , Protein Processing, Post-Translational , Acetylation , Tumor Microenvironment
2.
Vet Res ; 51(1): 105, 2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32854785

ABSTRACT

Neutrophils are the first barriers for resisting the invasion, proliferation, and damage caused by Salmonella Typhimurium. However, the mechanisms that control this resistance are not completely understood. In this study, we established an in vitro Salmonella infection model in porcine neutrophils, and analyzed the cellular transcriptome by deep sequencing and flow cytometry. The results showed that ribosomal gene transcription was inhibited, and two of these genes, RPL39 and RPL9, were related to TRP53 activation. Furthermore, several important innate immunity genes were also inhibited. Knock-down of RPL39 and RPL9 by siRNA caused an approximate fourfold up-regulation of TRP53. Knock-down of RPL39 and RPL9 also resulted in a significant down-regulation of IFNG and TNF, indicating an inhibition of the innate immune response. Silencing of RPL39 and RPL9 also resulted in the up-regulation of FAS, RB1, CASP6, and GADD45A, which play roles in cell cycle arrest and apoptosis. Neutrophils were either first treated with RPL39 siRNA, RPL9 siRNA, TRP53 activator, or TRP53 inhibitor, and then infected with Salmonella. Knock-down of RPL39 and RPL9, or treatment with TRP53 activator, can increase the intracellular proliferation of Salmonella in neutrophils. We speculate that much of the Salmonella virulence can be attributed to the enhancement of cell cycle arrest and the inhibition of the innate immune response, which allows the bacteria to successfully proliferate intracellularly.


Subject(s)
Apoptosis , Immunity, Innate , Salmonella Infections, Animal/immunology , Salmonella typhimurium/pathogenicity , Swine Diseases/immunology , Transcriptome/immunology , Animals , Neutrophils/immunology , Salmonella Infections, Animal/microbiology , Sus scrofa , Swine , Swine Diseases/microbiology , Virulence
3.
Mediators Inflamm ; 2020: 6062094, 2020.
Article in English | MEDLINE | ID: mdl-32454791

ABSTRACT

The liver is the organ for iron storage and regulation; it senses circulating iron concentrations in the body through the BMP-SMAD pathway and regulates the iron intake from food and erythrocyte recovery into the bloodstream by secreting hepcidin. Under iron deficiency, hypoxia, and hemorrhage, the liver reduces the expression of hepcidin to ensure the erythropoiesis but increases the excretion of hepcidin during infection and inflammation to reduce the usage of iron by pathogens. Excessive iron causes system iron overload; it accumulates in never system and damages neurocyte leading to neurodegenerative diseases such as Parkinson's syndrome. When some gene mutations affect the perception of iron and iron regulation ability in the liver, then they decrease the expression of hepcidin, causing hereditary diseases such as hereditary hemochromatosis. This review summarizes the source and utilization of iron in the body, the liver regulates systemic iron homeostasis by sensing the circulating iron concentration, and the expression of hepcidin regulated by various signaling pathways, thereby understanding the pathogenesis of iron-related diseases.


Subject(s)
Hemorrhage/metabolism , Hepcidins/metabolism , Homeostasis , Hypoxia/metabolism , Iron Deficiencies , Iron/metabolism , Animals , Cation Transport Proteins/metabolism , Erythrocytes/cytology , Ferroptosis , Genetic Predisposition to Disease , Humans , Inflammation , Iron Overload , Liver/metabolism , Mutation , Parkinson Disease/metabolism , Parkinson Disease/pathology
4.
BMC Genomics ; 21(1): 229, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32171242

ABSTRACT

BACKGROUND: Gene expression regulators identified in transcriptome profiling experiments may serve as ideal targets for genetic manipulations in farm animals. RESULTS: In this study, we developed a gene expression profile of 76,000+ unique transcripts for 224 porcine samples from 28 tissues collected from 32 animals using Super deepSAGE technology. Excellent sequencing depth was achieved for each multiplexed library, and replicated samples from the same tissues clustered together, demonstrating the high quality of Super deepSAGE data. Comparison with previous research indicated that our results not only have good reproducibility but also have greatly extended the coverage of the sample types as well as the number of genes. Clustering analysis revealed ten groups of genes showing distinct expression patterns among these samples. Our analysis of over-represented binding motifs identified 41 regulators, and we demonstrated a potential application of this dataset in infectious diseases and immune biology research by identifying an LPS-dependent transcription factor, runt-related transcription factor 1 (RUNX1), in peripheral blood mononuclear cells (PBMCs). The selected genes are specifically responsible for the transcription of toll-like receptor 2 (TLR2), lymphocyte-specific protein tyrosine kinase (LCK), and vav1 oncogene (VAV1), which belong to the T and B cell signaling pathways. CONCLUSIONS: The Super deepSAGE technology and tissue-differential expression profiles are valuable resources for investigating the porcine gene expression regulation. The identified RUNX1 target genes belong to the T and B cell signaling pathways, making them novel potential targets for the diagnosis and therapy of bacterial infections and other immune disorders.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/veterinary , Gene Regulatory Networks , Sus scrofa/genetics , Animals , Core Binding Factor Alpha 2 Subunit/genetics , Gene Expression Regulation , Leukocytes, Mononuclear/chemistry , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Proto-Oncogene Proteins c-vav/genetics , Reproducibility of Results , Swine , Tissue Distribution , Toll-Like Receptor 2/genetics
5.
J Bioinform Comput Biol ; 17(5): 1950032, 2019 10.
Article in English | MEDLINE | ID: mdl-31856668

ABSTRACT

MicroRNAs are single-stranded noncoding RNAs known to down-regulate target genes at the protein or mRNA level. Computational prediction of targets is essential for elucidating the detailed functions of microRNA. However, prediction specificity and sensitivity of the existing algorithms still need to be improved to generate useful hypotheses for subsequent experimental testing. A new microRNA binding-site representation method was developed, which uses four symbols "|", ":", "∼", and "∧" (indicating paired, unpaired, insertion, and bulge, respectively) to represent the status of each nucleotide base pair in the microRNA binding site. New features were established with the information of every two adjacent symbols. There are 12 possible combinations and the frequency of each defines a set of novel and useful features. A comprehensive training dataset is constructed for mammalian microRNAs with positive targets obtained from the microRNA target depository in the miRTarbase, while negative targets were derived from pseudo-microRNA bindings. An SVM model was established using the training dataset and a new software called Min3 was developed. Performance of Min3 was assessed with intensively studied examples of miR-155 and miR-92a. Prediction results showed that Min3 can discover 47% of experimental conformed targets on average. The overlapping is above 20% on average when compared with TargetScan and miRanda. Annotations of the public microRNA datasets showed that there is a negative effect (up-regulation) of the Min3 targets for the knock out/down of miR-155 and miR-92a. Six top ranked targets were selected for validation by wet-lab experiments, and five of them showed a regulation effect. The Min3 can be a good alternative to current microRNA target discovery software. This tool is available at https://sourceforge.net/projects/mirt3.


Subject(s)
Computational Biology/methods , MicroRNAs/metabolism , RNA, Messenger/metabolism , Software , Support Vector Machine , 3' Untranslated Regions , Binding Sites , Databases, Genetic , Gene Knockdown Techniques , Gene Knockout Techniques , HeLa Cells , Humans , MicroRNAs/genetics , Models, Genetic
6.
J Bioinform Comput Biol ; 17(4): 1950024, 2019 08.
Article in English | MEDLINE | ID: mdl-31617460

ABSTRACT

Understanding how genes are expressed and regulated in different biological processes are fundamental and challenging issues. Considerable progress has been made in studying the relationship between the expression and regulation of human genes. However, it is difficult to use these resources productively to analyze gene expression data. GEREDB (www.thua45.cn/geredb) has been developed to facilitate analyses that will provide insights into the regulation of genes that govern specific biological responses. GEREDB is a publicly available, manually curated biological database that stores the data regarding relationships between expression and regulation of human genes. To date, more than 39,000 Links have been contextually annotated by reviewing more than 53,000 abstracts. GEREDB can be searched using the official NCBI gene symbol as a query, and it can be downloaded along with the GEREA software package. GEREDB has the ability to analyze user-supplied gene expression data in a causal analysis oriented manner using the GEREA bioinformatics tool.


Subject(s)
Data Curation , Data Mining , Databases, Genetic , Gene Expression Regulation , Abstracting and Indexing , Internet , PubMed , Software , User-Computer Interface
7.
BMC Vet Res ; 15(1): 195, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31186019

ABSTRACT

BACKGROUND: MicroRNAs are involved in a broad range of biological processes and are known to be differentially expressed in response to bacterial pathogens. RESULTS: The present study identified microRNA responses in porcine peripheral blood after inoculation with the human foodborne pathogen Salmonella enterica serovar Typhimurium strain LT2. We compared the microRNA transcriptomes of the whole blood of pigs (Duroc × Landrace × Yorkshire) at 2-days post inoculation and before Salmonella infection. The analysis identified a total of 29 differentially expressed microRNAs, most of which are implicated in Salmonella infection and immunology signaling pathways. Joint analysis of the microRNA and mRNA transcriptomes identified 24 microRNAs with binding sites that were significantly enriched in 3' UTR of differentially expressed mRNAs. Of these microRNAs, three were differentially expressed after Salmonella challenge in peripheral blood (ssc-miR-146a-5p, ssc-miR-125a, and ssc-miR-129a-5p). Expression of 23 targets of top-ranked microRNA, ssc-miR-146a-5p, was validated by real-time PCR. The effects of miR-146a, IFN-γ, and IL-6 on the regulation of fecal bacteria shedding counts in pigs were investigated by in vivo study with a Salmonella challenge model. CONCLUSIONS: The results indicated that induction of miR-146a in peripheral blood could significantly increase the fecal bacterial load, whereas IFN-γ had the reverse effect. These microRNAs can be used to identify targets for controlling porcine salmonellosis.


Subject(s)
Bacterial Shedding/immunology , MicroRNAs/metabolism , Salmonella Infections, Animal/immunology , Swine Diseases/immunology , Animals , Feces/microbiology , Female , Interferon-gamma/metabolism , Interleukin-6/metabolism , Male , RNA, Messenger/metabolism , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/immunology , Signal Transduction , Sus scrofa , Swine , Swine Diseases/microbiology , Transcriptome
8.
Vet Res ; 49(1): 121, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30541630

ABSTRACT

Peripheral blood transcriptome is an important intermediate data source for investigating the mechanism of Salmonella invasion, proliferation, and transmission. We challenged 4-week old piglets with Salmonella enterica serovar Typhimurium LT2 and investigated the peripheral blood gene expression profile before treatment (d0) and at 2 and 7 days post-inoculation (dpi) using deep sequencing. Regulator pathways were first predicted in silico and validated by wet-lab experiments. In total, 1255, 765, and 853 genes were differentially expressed between 2 dpi/d0, 7 dpi/d0, and 7 dpi/2 dpi, respectively. Additionally, 1333 genes showed a time effect during the investigated Salmonella infection period. Clustering analysis showed that the differentially expressed genes fell into six distinct expression clusters. Pathway annotation of these gene clusters showed that the innate immune system was first significantly upregulated at 2 dpi and then attenuated at 7 dpi. Toll-like receptor cascades, MyD88 cascade, phagosome pathway, cytokine signaling pathway, and lysosome pathway showed a similar expression pattern. Interestingly, we found that the ribosome pathway was significantly inhibited at 2 and 7 dpi. Gene expression regulation network enrichment analysis identified several candidate factors controlling the expression clusters. Further in vitro study showed that TGFB1 can inhibit Salmonella replication whereas TRP53 can promote Salmonella replication in porcine peripheral blood mononuclear cells and murine macrophages. These results provide new insights into the molecular mechanism of Salmonella-host interactions and clues for the genetic improvement of Salmonella infection resistance in pigs.


Subject(s)
Gene Expression Regulation , Salmonella Infections, Animal/genetics , Salmonella typhimurium/immunology , Swine Diseases/genetics , Transforming Growth Factor beta1/genetics , Tumor Suppressor Protein p53/genetics , Animals , Host-Pathogen Interactions , Leukocytes, Mononuclear , Macrophages , Mice , Salmonella Infections, Animal/immunology , Swine , Swine Diseases/immunology , Transcriptome , Transforming Growth Factor beta1/immunology , Transforming Growth Factor beta1/metabolism , Tumor Suppressor Protein p53/immunology , Tumor Suppressor Protein p53/metabolism
9.
Res Vet Sci ; 117: 138-143, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29274513

ABSTRACT

Salmonella infects many vertebrate species, and animals such as pigs can be colonized with Salmonella and become established carriers. Analyzing the roles of microRNA in intracellular proliferation is important for understanding the process of Salmonella infection. The objective of this study is to verify the regulation effect of miR-143 on ATP6V1A and its functions in the intracellular growth of Salmonella. A new miR-143 binding site was discovered in the 3' UTR of ATP6V1A using a newly developed prediction tool. The binding site was confirmed by binding site deletion assay. Real-time PCR results indicated that ATP6V1A was predominantly expressed in bone-marrow-derived macrophages, and the expression of miR-143 in different tissues was negatively correlated with ATP6V1A. The Salmonella proliferation assay showed that the expression of miR-143 could inhibit intracellular Salmonella growth in macrophages by target ATP6V1A. The results strongly suggest that miR-143 plays important regulatory roles in the development of Salmonella infection in animals.


Subject(s)
Macrophages/microbiology , MicroRNAs/genetics , Salmonella Infections, Animal/genetics , Swine Diseases/genetics , Animals , Cell Proliferation , Cytoplasm , Gene Expression Profiling/methods , Salmonella , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...