Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Sci Immunol ; 6(64): eabh0707, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34652961

ABSTRACT

Type 2 T helper (TH2) cells are protective against parasitic worm infections but also aggravate allergic inflammation. Although the role of dendritic cells (DCs) in TH2 cell differentiation is well established, the underlying mechanisms are largely unknown. Here, we show that DC induction of TH2 cells depends on membrane-associated RING-CH-1 (MARCH1) ubiquitin ligase. The pro-TH2 effect of MARCH1 relied on lymph node (LN)­resident DCs, which triggered T cell receptor (TCR) signaling and induced GATA-3 expression from naïve CD4+ T cells independent of tissue-driven migratory DCs. Mice with mutations in the ubiquitin acceptor sites of MHCII and CD86, the two substrates of MARCH1, failed to develop TH2 cells. These findings suggest that TH2 cell development depends on ubiquitin-mediated clearance of antigen-presenting and costimulatory molecules by LN-resident DCs and consequent control of TCR signaling.


Subject(s)
Dendritic Cells/immunology , Lymph Nodes/immunology , Th2 Cells/immunology , Ubiquitin-Protein Ligases/immunology , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Ubiquitin-Protein Ligases/deficiency
2.
J Clin Invest ; 131(12)2021 06 15.
Article in English | MEDLINE | ID: mdl-33956668

ABSTRACT

Severe asthma remains challenging to manage and has limited treatment options. We have previously shown that targeting smooth muscle integrin α5ß1 interaction with fibronectin can mitigate the effects of airway hyperresponsiveness by impairing force transmission. In this study, we show that another member of the integrin superfamily, integrin α2ß1, is present in airway smooth muscle and capable of regulating force transmission via cellular tethering to the matrix protein collagen I and, to a lesser degree, laminin-111. The addition of an inhibitor of integrin α2ß1 impaired IL-13-enhanced contraction in mouse tracheal rings and human bronchial rings and abrogated the exaggerated bronchoconstriction induced by allergen sensitization and challenge. We confirmed that this effect was not due to alterations in classic intracellular myosin light chain phosphorylation regulating muscle shortening. Although IL-13 did not affect surface expression of α2ß1, it did increase α2ß1-mediated adhesion and the level of expression of an activation-specific epitope on the ß1 subunit. We developed a method to simultaneously quantify airway narrowing and muscle shortening using 2-photon microscopy and demonstrated that inhibition of α2ß1 mitigated IL-13-enhanced airway narrowing without altering muscle shortening by impairing the tethering of muscle to the surrounding matrix. Our data identified cell matrix tethering as an attractive therapeutic target to mitigate the severity of airway contraction in asthma.


Subject(s)
Asthma/metabolism , Collagen Type I/metabolism , Integrin alpha2beta1/metabolism , Trachea/metabolism , Animals , Asthma/pathology , Cell Line , Constriction, Pathologic/metabolism , Humans , Interleukin-13/metabolism , Mice
3.
Proc Natl Acad Sci U S A ; 116(14): 6932-6937, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30894497

ABSTRACT

Clinical application of inhaled glucocorticoids (GCs) has been hampered in the case of steroid-resistant severe asthma. To overcome this limitation, we have developed a series of highly potent GCs, including VSGC12, VSG158, and VSG159 based on the structural insight into the glucocorticoid receptor (GR). Particularly, VSG158 exhibits a maximal repression of lung inflammation and is 10 times more potent than the currently most potent clinical GC, Fluticasone Furoate (FF), in a murine model of asthma. More importantly, VSG158 displays a unique property to reduce neutrophilic inflammation in a steroid-resistant airway inflammation model, which is refractory to clinically available GCs, including dexamethasone and FF. VSG158 and VSG159 are able to deliver effective treatments with reduced off-target and side effects. In addition, these GCs also display pharmacokinetic properties that are suitable for the inhalation delivery method for asthma treatment. Taken together, the excellent therapeutic and side-effect profile of these highly potent GCs holds promise for treating steroid-resistant severe asthma.


Subject(s)
Anti-Asthmatic Agents , Asthma/drug therapy , Drug Development , Glucocorticoids , Animals , Anti-Asthmatic Agents/chemistry , Anti-Asthmatic Agents/pharmacology , Asthma/pathology , Disease Models, Animal , Female , Glucocorticoids/chemistry , Glucocorticoids/pharmacology , Male , Mice , Receptors, Glucocorticoid/agonists , Severity of Illness Index
4.
J Immunol ; 199(2): 559-569, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28607111

ABSTRACT

Th17 cell responses orchestrate immunity against extracellular pathogens but also underlie autoimmune disease pathogenesis. In this study, we uncovered a distinct and critical role for miR-18a in limiting Th17 cell differentiation. miR-18a was the most dynamically upregulated microRNA of the miR-17-92 cluster in activated T cells. miR-18a deficiency enhanced CCR6+ RAR-related orphan receptor (ROR)γt+ Th17 cell differentiation in vitro and increased the number of tissue Th17 cells expressing CCR6, RORγt, and IL-17A in airway inflammation models in vivo. Sequence-specific miR-18 inhibitors increased CCR6 and RORγt expression in mouse and human CD4+ T cells, revealing functional conservation. miR-18a directly targeted Smad4, Hif1a, and Rora, all key transcription factors in the Th17 cell gene-expression program. These findings indicate that activating signals influence the outcome of Th cell differentiation via differential regulation of mature microRNAs within a common cluster.


Subject(s)
Cell Differentiation , MicroRNAs/metabolism , Th17 Cells/physiology , Animals , CD4-Positive T-Lymphocytes/immunology , Cytokines/immunology , Cytokines/metabolism , Gene Expression Regulation , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/pathology , Interleukin-17/immunology , Lymphocyte Activation , Mice , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Receptors, CCR6/genetics , Receptors, CCR6/immunology , Smad4 Protein/genetics , Smad4 Protein/metabolism , Th17 Cells/immunology
5.
J Allergy Clin Immunol ; 139(1): 72-81.e1, 2017 01.
Article in English | MEDLINE | ID: mdl-27215490

ABSTRACT

BACKGROUND: Epithelial barrier dysfunction and increased permeability may contribute to antigen sensitization and disease progression in asthma. Claudin-18.1 is the only known lung-specific tight junction protein, but its contribution to airway barrier function or asthma is unclear. OBJECTIVES: We sought to test the hypotheses that claudin-18 is a determinant of airway epithelial barrier function that is downregulated by IL-13 and that claudin-18 deficiency results in increased aeroantigen sensitization and airway hyperresponsiveness. METHODS: Claudin-18.1 mRNA levels were measured in airway epithelial brushings from healthy controls and patients with asthma. In patients with asthma, claudin-18 levels were compared with a three-gene-mean marker of TH2 inflammation. Airway epithelial permeability changes due to claudin-18 deficiency were measured in 16HBE cells and claudin-18 null mice. The effect of IL-13 on claudin expression was determined in primary human airway epithelial cells and in mice. Airway hyperresponsiveness and serum IgE levels were compared in claudin-18 null and wild-type mice following aspergillus sensitization. RESULTS: Epithelial brushings from patients with asthma (n = 67) had significantly lower claudin-18 mRNA levels than did those from healthy controls (n = 42). Claudin-18 levels were lowest among TH2-high patients with asthma. Loss of claudin-18 was sufficient to impair epithelial barrier function in 16HBE cells and in mouse airways. IL-13 decreased claudin-18 expression in primary human cells and in mice. Claudin-18 null mice had significantly higher serum IgE levels and increased airway responsiveness following intranasal aspergillus sensitization. CONCLUSIONS: These data support the hypothesis that claudin-18 is an essential contributor to the airway epithelial barrier to aeroantigens. Furthermore, TH2 inflammation suppresses claudin-18 expression, potentially promoting sensitization and airway hyperresponsiveness.


Subject(s)
Asthma/metabolism , Claudins/metabolism , Respiratory Mucosa/metabolism , Respiratory System/metabolism , Adult , Animals , Antigens, Fungal/immunology , Arylsulfonates/metabolism , Aspergillus/immunology , Asthma/blood , Asthma/pathology , Asthma/physiopathology , Cell Line , Cells, Cultured , Claudins/deficiency , Claudins/genetics , Humans , Immunoglobulin E/blood , Interleukin-13/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Permeability , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Respiratory System/cytology , Respiratory System/pathology , Respiratory System/physiopathology , Young Adult
6.
J Clin Invest ; 127(1): 365-374, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27918306

ABSTRACT

Treatment options are limited for severe asthma, and the need for additional therapies remains great. Previously, we demonstrated that integrin αvß6-deficient mice are protected from airway hyperresponsiveness, due in part to increased expression of the murine ortholog of human chymase. Here, we determined that chymase protects against cytokine-enhanced bronchoconstriction by cleaving fibronectin to impair tension transmission in airway smooth muscle (ASM). Additionally, we identified a pathway that can be therapeutically targeted to mitigate the effects of airway hyperresponsiveness. Administration of chymase to human bronchial rings abrogated IL-13-enhanced contraction, and this effect was not due to alterations in calcium homeostasis or myosin light chain phosphorylation. Rather, chymase cleaved fibronectin, inhibited ASM adhesion, and attenuated focal adhesion phosphorylation. Disruption of integrin ligation with an RGD-containing peptide abrogated IL-13-enhanced contraction, with no further effect from chymase. We identified α5ß1 as the primary fibronectin-binding integrin in ASM, and α5ß1-specific blockade inhibited focal adhesion phosphorylation and IL-13-enhanced contraction, with no additional effect from chymase. Delivery of an α5ß1 inhibitor into murine airways abrogated the exaggerated bronchoconstriction induced by allergen sensitization and challenge. Finally, α5ß1 blockade enhanced the effect of the bronchodilator isoproterenol on airway relaxation. Our data identify the α5ß1 integrin as a potential therapeutic target to mitigate the severity of airway contraction in asthma.


Subject(s)
Asthma/metabolism , Asthma/physiopathology , Integrin alpha5beta1/metabolism , Isoproterenol/pharmacology , Muscle Relaxation/drug effects , Myocytes, Smooth Muscle/metabolism , Animals , Asthma/drug therapy , Asthma/genetics , Cell Adhesion/drug effects , Cell Adhesion/genetics , Cell Line , Chymases/toxicity , Disease Models, Animal , Humans , Integrin alpha5beta1/genetics , Interleukin-13/genetics , Interleukin-13/metabolism , Mice , Myocytes, Smooth Muscle/pathology , Oligopeptides/genetics , Oligopeptides/metabolism , Phosphorylation/drug effects , Phosphorylation/genetics , Rabbits
8.
Transl Res ; 171: 1-16, 2016 May.
Article in English | MEDLINE | ID: mdl-26898714

ABSTRACT

Inflammation drives asthma and atherosclerosis. Clinical studies suggest that asthmatic patients have a high risk of atherosclerosis. Yet this hypothesis remains uncertain, given that Th2 imbalance causes asthma whereas Th1 immunity promotes atherosclerosis. In this study, chronic allergic lung inflammation (ALI) was induced in mice by ovalbumin sensitization and challenge. Acute ALI was induced in mice by ovalbumin and aluminum sensitization and ovalbumin challenge. Atherosclerosis was produced in apolipoprotein E-deficient (Apoe(-/-)) mice with a Western diet. When chronic ALI and atherosclerosis were produced simultaneously, ALI increased atherosclerotic lesion size, lesion inflammatory cell content, elastin fragmentation, smooth muscle cell (SMC) loss, lesion cell proliferation, and apoptosis. Production of acute ALI before atherogenesis did not affect lesion size, but increased atherosclerotic lesion CD4(+) T cells, lesion SMC loss, angiogenesis, and apoptosis. Production of acute ALI after atherogenesis also did not change atherosclerotic lesion area, but increased lesion elastin fragmentation, cell proliferation, and apoptosis. In mice with chronic ALI and diet-induced atherosclerosis, daily inhalation of a mast cell inhibitor or corticosteroid significantly reduced atherosclerotic lesion T-cell and mast cell contents, SMC loss, angiogenesis, and cell proliferation and apoptosis, although these drugs did not affect lesion area, compared with those that received vehicle treatment. In conclusion, both chronic and acute ALI promote atherogenesis or aortic lesion pathology, regardless whether ALI occurred before, after, or at the same time as atherogenesis. Antiasthmatic medication can efficiently mitigate atherosclerotic lesion pathology.


Subject(s)
Apolipoproteins E/deficiency , Atherosclerosis/etiology , Hypersensitivity/complications , Pneumonia/complications , Animals , Apolipoproteins E/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Budesonide/pharmacology , Budesonide/therapeutic use , Chronic Disease , Disease Progression , Glucocorticoids/pharmacology , Hypersensitivity/drug therapy , Hypersensitivity/pathology , Inflammation/pathology , Ketotifen/pharmacology , Ketotifen/therapeutic use , Male , Mast Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Ovalbumin/immunology , Pneumonia/drug therapy , Pneumonia/pathology
9.
Arterioscler Thromb Vasc Biol ; 36(3): 570-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26868210

ABSTRACT

OBJECTIVE: Both asthma and abdominal aortic aneurysms (AAA) involve inflammation. It remains unknown whether these diseases interact. APPROACH AND RESULTS: Databases analyzed included Danish National Registry of Patients, a population-based nationwide case-control study included all patients with ruptured AAA and age- and sex-matched AAA controls without rupture in Denmark from 1996 to 2012; Viborg vascular trial, subgroup study of participants from the population-based randomized Viborg vascular screening trial. Patients with asthma were categorized by hospital diagnosis, bronchodilator use, and the recorded use of other anti-asthma prescription medications. Logistic regression models were fitted to determine whether asthma associated with the risk of ruptured AAA in Danish National Registry of Patients and an independent risk of having an AAA at screening in the Viborg vascular trial. From the Danish National Registry of Patients study, asthma diagnosed <1 year or 6 months before the index date increased the risk of AAA rupture before (odds ratio [OR]=1.60-2.12) and after (OR=1.51-2.06) adjusting for AAA comorbidities. Use of bronchodilators elevated the risk of AAA rupture from ever use to within 90 days from the index date, before (OR=1.10-1.37) and after (OR=1.10-1.31) adjustment. Patients prescribed anti-asthma drugs also showed an increased risk of rupture before (OR=1.12-1.79) and after (OR=1.09-1.48) the same adjustment. In Viborg vascular trial, anti-asthmatic medication use associated with increased risk of AAA before (OR=1.45) or after adjustment for smoking (OR=1.45) or other risk factors (OR=1.46). CONCLUSIONS: Recent active asthma increased risk of AAA and ruptured AAA. These findings document and furnish novel links between airway disease and AAA, 2 common diseases that share inflammatory aspects.


Subject(s)
Aortic Aneurysm, Abdominal/epidemiology , Aortic Rupture/epidemiology , Asthma/epidemiology , Aged , Aged, 80 and over , Anti-Asthmatic Agents/therapeutic use , Aortic Aneurysm, Abdominal/diagnosis , Aortic Rupture/diagnosis , Asthma/diagnosis , Asthma/drug therapy , Bronchodilator Agents/therapeutic use , Databases, Factual , Denmark/epidemiology , Female , Humans , Logistic Models , Male , Middle Aged , Odds Ratio , Registries , Risk Assessment , Risk Factors , Time Factors
10.
Arterioscler Thromb Vasc Biol ; 36(1): 69-77, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26543094

ABSTRACT

OBJECTIVE: Asthma and abdominal aortic aneurysms (AAA) both involve inflammation. Patients with asthma have an increased risk of developing AAA or experiencing aortic rupture. This study tests the development of one disease on the progression of the other. APPROACH AND RESULTS: Ovalbumin sensitization and challenge in mice led to the development of allergic lung inflammation (ALI). Subcutaneous infusion of angiotensin II into mice produced AAA. Simultaneous production of ALI in AAA mice doubled abdominal aortic diameter and increased macrophage and mast cell content, arterial media smooth muscle cell loss, cell proliferation, and angiogenesis in AAA lesions. ALI also increased plasma IgE, reduced plasma interleukin-5, and increased bronchioalveolar total inflammatory cell and eosinophil accumulation. Intraperitoneal administration of an anti-IgE antibody suppressed AAA lesion formation and reduced lesion inflammation, plasma IgE, and bronchioalveolar inflammation. Pre-establishment of ALI also increased AAA lesion size, lesion accumulation of macrophages and mast cells, media smooth muscle cell loss, and plasma IgE, reduced plasma interleukin-5, interleukin-13, and transforming growth factor-ß, and increased bronchioalveolar inflammation. Consequent production of ALI also doubled lesion size of pre-established AAA and increased lesion mast cell and T-cell accumulation, media smooth muscle cell loss, lesion cell proliferation and apoptosis, plasma IgE, and bronchioalveolar inflammation. In periaortic CaCl2 injury-induced AAA in mice, production of ALI also increased AAA formation, lesion inflammation, plasma IgE, and bronchioalveolar inflammatory cell accumulation. CONCLUSIONS: This study suggests a pathological link between airway allergic disease and AAA. Production of one disease aggravates the progression of the other.


Subject(s)
Angiotensin II , Aorta, Abdominal/pathology , Aortic Aneurysm, Abdominal/chemically induced , Pneumonia/complications , Respiratory Hypersensitivity/complications , Animals , Anti-Allergic Agents/pharmacology , Antibodies, Monoclonal/pharmacology , Aorta, Abdominal/drug effects , Aorta, Abdominal/immunology , Aorta, Abdominal/metabolism , Aortic Aneurysm, Abdominal/immunology , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/prevention & control , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Calcium Chloride , Dilatation, Pathologic , Disease Models, Animal , Disease Progression , Immunoglobulin E/blood , Immunoglobulin E/immunology , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Lung/immunology , Lung/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mast Cells/immunology , Mast Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Ovalbumin , Pneumonia/chemically induced , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia/prevention & control , Respiratory Hypersensitivity/chemically induced , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/prevention & control , Risk Factors , Signal Transduction , Vascular Remodeling
11.
Sci Transl Med ; 7(276): 276ra27, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25717100

ABSTRACT

Airway mucus in cystic fibrosis (CF) is highly elastic, but the mechanism behind this pathology is unclear. We hypothesized that the biophysical properties of CF mucus are altered because of neutrophilic oxidative stress. Using confocal imaging, rheology, and biochemical measures of inflammation and oxidation, we found that CF airway mucus gels have a molecular architecture characterized by a core of mucin covered by a web of DNA and a rheological profile characterized by high elasticity that can be normalized by chemical reduction. We also found that high levels of reactive oxygen species in CF mucus correlated positively and significantly with high concentrations of the oxidized products of cysteine (disulfide cross-links). To directly determine whether oxidation can cross-link mucins to increase mucus elasticity, we exposed induced sputum from healthy subjects to oxidizing stimuli and found a marked and thiol-dependent increase in sputum elasticity. Targeting mucin disulfide cross-links using current thiol-amino structures such as N-acetylcysteine (NAC) requires high drug concentrations to have mucolytic effects. We therefore synthesized a thiol-carbohydrate structure (methyl 6-thio-6-deoxy-α-D-galactopyranoside) and found that it had stronger reducing activity than NAC and more potent and fast-acting mucolytic activity in CF sputum. Thus, oxidation arising from airway inflammation or environmental exposure contributes to pathologic mucus gel formation in the lung, which suggests that it can be targeted by thiol-modified carbohydrates.


Subject(s)
Cross-Linking Reagents/metabolism , Gels/metabolism , Lung/physiology , Mucins/metabolism , Mucus/metabolism , Polymers/metabolism , Acetylcysteine/pharmacology , Animals , Biomechanical Phenomena/drug effects , Cystic Fibrosis/pathology , Cystic Fibrosis/physiopathology , DNA/metabolism , Disulfides/metabolism , Elasticity/drug effects , Expectorants/pharmacology , Galactose/chemistry , Galactose/pharmacology , Humans , Lung/drug effects , Mice, Inbred C57BL , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Reducing Agents/pharmacology , Sputum/drug effects , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/pharmacology
12.
Cell Discov ; 12015.
Article in English | MEDLINE | ID: mdl-27066265

ABSTRACT

Glucocorticoids are the most effective treatment for asthma. However, their clinical applications are limited by low efficacy in severe asthma and by undesired side effects associated with high dose or prolonged use. The most successful approach to overcome these limitations has been the development of highly potent glucocorticoids that can be delivered to the lungs by inhalation to achieve local efficacy with minimal systemic effects. On the basis of our previous structural studies, we designed and developed a highly potent glucocorticoid, VSGC12, which showed an improved anti-inflammation activity in both cell-based reporter assays and cytokine inhibition experiments, as well as in a gene expression profiling of mouse macrophage RAW264.7 cells. In a mouse asthma model, VSGC12 delivered a higher efficacy than fluticasone furoate, a leading clinical compound, in many categories including histology and the number of differentiated immune cells. VSGC12 also showed a higher potency than fluticasone furoate in repressing most asthma symptoms. Finally, VSGC12 showed a better side effect profile than fluticasone furoate at their respective effective doses, including better insulin response and less bone loss in an animal model. The excellent therapeutic and side effect properties of VSGC12 provide a promising perspective for developing this potent glucocorticoid as a new effective drug for asthma.

13.
Nat Immunol ; 15(12): 1162-70, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25362490

ABSTRACT

MicroRNAs (miRNAs) exert powerful effects on immunological function by tuning networks of target genes that orchestrate cell activity. We sought to identify miRNAs and miRNA-regulated pathways that control the type 2 helper T cell (TH2 cell) responses that drive pathogenic inflammation in asthma. Profiling miRNA expression in human airway-infiltrating T cells revealed elevated expression of the miRNA miR-19a in asthma. Modulating miR-19 activity altered TH2 cytokine production in both human and mouse T cells, and TH2 cell responses were markedly impaired in cells lacking the entire miR-17∼92 cluster. miR-19 promoted TH2 cytokine production and amplified inflammatory signaling by direct targeting of the inositol phosphatase PTEN, the signaling inhibitor SOCS1 and the deubiquitinase A20. Thus, upregulation of miR-19a in asthma may be an indicator and a cause of increased TH2 cytokine production in the airways.


Subject(s)
Asthma/immunology , Cytokines/biosynthesis , MicroRNAs/immunology , Th2 Cells/immunology , Animals , Asthma/genetics , Asthma/metabolism , Bronchoalveolar Lavage Fluid/cytology , Clinical Trials as Topic , Flow Cytometry , High-Throughput Screening Assays , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Mice , Mice, Transgenic , Multiplex Polymerase Chain Reaction , Th2 Cells/metabolism , Up-Regulation
14.
J Clin Invest ; 124(11): 4895-8, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25271629

ABSTRACT

The intracellular scaffold protein IQGAP1 supports protein complexes in conjunction with numerous binding partners involved in multiple cellular processes. Here, we determined that IQGAP1 modulates airway smooth muscle contractility. Compared with WT controls, at baseline as well as after immune sensitization and challenge, Iqgap1-/- mice had higher airway responsiveness. Tracheal rings from Iqgap1-/- mice generated greater agonist-induced contractile force, even after removal of the epithelium. RhoA, a regulator of airway smooth muscle contractility, was activated in airway smooth muscle lysates from Iqgap1-/- mice. Likewise, knockdown of IQGAP1 in primary human airway smooth muscle cells increased RhoA activity. Immunoprecipitation studies indicated that IQGAP1 binds to both RhoA and p190A-RhoGAP, a GTPase-activating protein that normally inhibits RhoA activation. Proximity ligation assays in primary airway human smooth muscle cells and mouse tracheal sections revealed colocalization of p190A-RhoGAP and RhoA; however, these proteins did not colocalize in IQGAP1 knockdown cells or in Iqgap1-/- trachea. Compared with healthy controls, human subjects with asthma had decreased IQGAP1 expression in airway biopsies. Together, these data demonstrate that IQGAP1 acts as a scaffold that colocalizes p190A-RhoGAP and RhoA, inactivating RhoA and suppressing airway smooth muscle contraction. Furthermore, our results suggest that IQGAP1 has the potential to modulate airway contraction severity in acute asthma.


Subject(s)
Muscle Contraction , Muscle, Smooth/physiopathology , ras GTPase-Activating Proteins/physiology , rho GTP-Binding Proteins/metabolism , Animals , Asthma/metabolism , Asthma/physiopathology , Mice, Knockout , Muscle, Smooth/immunology , Protein Transport , Signal Transduction , Trachea/immunology , Trachea/physiopathology , rhoA GTP-Binding Protein
15.
Biochem Biophys Res Commun ; 442(1-2): 122-6, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24239886

ABSTRACT

S-nitrosoglutathione reductase (GSNOR) is a key denitrosylase and critically important for protecting immune and other cells from nitrosative stress. Pharmacological inhibition of GSNOR is being actively pursued as a therapeutic approach to increase S-nitrosoglutathione levels for the treatment of asthma and cystic fibrosis. In the present study, we employed GSNOR-deficient (GSNOR(-/-)) mice to investigate whether inactivation of GSNOR may increase susceptibility to pulmonary infection by Klebsiella pneumoniae, a common cause of nosocomial pneumonia. We found that compared to wild-type mice, bacterial colony forming units 48 h after intranasal infection with K. pneumoniae were increased over 4-folds in lung and spleen and strikingly, over a 1000-folds in blood of GSNOR(-/-) mice. Lung injury was comparable between infected wild-type and GSNOR(-/-) mice, but inflammation and injury was significantly elevated in spleen of GSNOR(-/-) mice. Whereas all wild-type mice survived 48 h after infection, 10 of 23 GSNOR(-/-) mice died. Thus, GSNOR appears to play a crucial role in controlling pulmonary and systemic infection by K. pneumoniae. Our results suggest that patients treated in clinical trials with inhibitors of GSNOR should be carefully monitored for signs of infection.


Subject(s)
Glutathione Reductase/metabolism , Klebsiella Infections/genetics , Klebsiella Infections/mortality , Klebsiella pneumoniae/physiology , Lung/microbiology , Alcohol Dehydrogenase , Animals , Cross Infection/genetics , Disease Models, Animal , Glutathione Reductase/genetics , Klebsiella Infections/pathology , Lung/enzymology , Mice , Mice, Inbred C57BL , Spleen/pathology
16.
PLoS One ; 8(4): e61961, 2013.
Article in English | MEDLINE | ID: mdl-23637937

ABSTRACT

Th2-driven lung inflammation increases Arginase 1 (Arg1) expression in alternatively-activated macrophages (AAMs). AAMs modulate T cell and wound healing responses and Arg1 might contribute to asthma pathogenesis by inhibiting nitric oxide production, regulating fibrosis, modulating arginine metabolism and restricting T cell proliferation. We used mice lacking Arg1 in myeloid cells to investigate the contribution of Arg1 to lung inflammation and pathophysiology. In six model systems encompassing acute and chronic Th2-mediated lung inflammation we observed neither a pathogenic nor protective role for myeloid-expressed Arg1. The number and composition of inflammatory cells in the airways and lungs, mucus secretion, collagen deposition, airway hyper-responsiveness, and T cell cytokine production were not altered if AAMs were deficient in Arg1 or simultaneously in both Arg1 and NOS2. Our results argue that Arg1 is a general feature of alternative activation but only selectively regulates Th2 responses. Therefore, attempts to experimentally or therapeutically inhibit arginase activity in the lung should be examined with caution.


Subject(s)
Arginase/metabolism , Myeloid Cells/immunology , Myeloid Cells/metabolism , Pneumonia/immunology , Pneumonia/metabolism , Th2 Cells/immunology , Animals , Antigens, Helminth/immunology , Arginase/genetics , Aspergillus/immunology , Gene Expression , Granuloma/immunology , Granuloma/metabolism , Granuloma/pathology , Macrophage Activation/genetics , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Knockout , Myeloid Cells/pathology , Ovalbumin/immunology , Pneumonia/genetics , Pneumonia/pathology , Schistosoma mansoni/immunology
17.
J Clin Invest ; 123(5): 2037-48, 2013 May.
Article in English | MEDLINE | ID: mdl-23543053

ABSTRACT

Increased airway smooth muscle (ASM) contractility and the development of airway hyperresponsiveness (AHR) are cardinal features of asthma, but the signaling pathways that promote these changes are poorly understood. Tyrosine phosphorylation is tightly regulated by the opposing actions of protein tyrosine kinases and phosphatases, but little is known about whether tyrosine phosphatases influence AHR. Here, we demonstrate that genetic inactivation of receptor-like protein tyrosine phosphatase J (Ptprj), which encodes CD148, protected mice from the development of increased AHR in two different asthma models. Surprisingly, CD148 deficiency minimally affected the inflammatory response to allergen, but significantly altered baseline pulmonary resistance. Mice specifically lacking CD148 in smooth muscle had decreased AHR, and the frequency of calcium oscillations in CD148-deficient ASM was substantially attenuated, suggesting that signaling pathway alterations may underlie ASM contractility. Biochemical analysis of CD148-deficient ASM revealed hyperphosphorylation of the C-terminal inhibitory tyrosine of SRC family kinases (SFKs), implicating CD148 as a critical positive regulator of SFK signaling in ASM. The effect of CD148 deficiency on ASM contractility could be mimicked by treatment of both mouse trachea and human bronchi with specific SFK inhibitors. Our studies identify CD148 and the SFKs it regulates in ASM as potential targets for the treatment of AHR.


Subject(s)
Asthma/pathology , Lung/pathology , src-Family Kinases/metabolism , Animals , Asthma/metabolism , Bronchi/pathology , Cell Lineage , Female , Gene Deletion , Inflammation/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Myocytes, Smooth Muscle/cytology , Ovalbumin/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Signal Transduction , Trachea/pathology
18.
Proc Natl Acad Sci U S A ; 110(2): 660-5, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23269839

ABSTRACT

Airway obstruction is a hallmark of allergic asthma and is caused primarily by airway smooth muscle (ASM) hypercontractility. Airway inflammation leads to the release of cytokines that enhance ASM contraction by increasing ras homolog gene family, member A (RhoA) activity. The protective mechanisms that prevent or attenuate the increase in RhoA activity have not been well studied. Here, we report that mice lacking the gene that encodes the protein Milk Fat Globule-EGF factor 8 (Mfge8(-/-)) develop exaggerated airway hyperresponsiveness in experimental models of asthma. Mfge8(-/-) ASM had enhanced contraction after treatment with IL-13, IL-17A, or TNF-α. Recombinant Mfge8 reduced contraction in murine and human ASM treated with IL-13. Mfge8 inhibited IL-13-induced NF-κB activation and induction of RhoA. Mfge8 also inhibited rapid activation of RhoA, an effect that was eliminated by an inactivating point mutation in the RGD integrin-binding site in recombinant Mfge8. Human subjects with asthma had decreased Mfge8 expression in airway biopsies compared with healthy controls. These data indicate that Mfge8 binding to integrin receptors on ASM opposes the effect of allergic inflammation on RhoA activity and identify a pathway for specific inhibition of ASM hypercontractility in asthma.


Subject(s)
Antigens, Surface/metabolism , Asthma/physiopathology , Bronchial Hyperreactivity/physiopathology , Milk Proteins/metabolism , Muscle Contraction/physiology , Muscle, Smooth/physiology , Analysis of Variance , Animals , Antigens, Surface/genetics , Blotting, Western , Bronchoalveolar Lavage , Calcium/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Humans , Interleukin-13/pharmacology , Lung/pathology , Mice , Mice, Knockout , Milk Proteins/genetics , NF-kappa B/metabolism , Point Mutation/genetics , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein
19.
Proc Natl Acad Sci U S A ; 109(44): 18042-7, 2012 Oct 30.
Article in English | MEDLINE | ID: mdl-23064636

ABSTRACT

TGFß activation and signaling have been extensively studied in experimental models of allergen-induced asthma as potential therapeutic targets during chronic or acute phases of the disease. Outcomes of experimental manipulation of TGFß activity have been variable, in part due to use of different model systems. Using an ovalbumin (OVA)-induced mouse model of asthma, we here show that innate variation within TGFß1 genetic modifier loci, Tgfbm2 and Tgfbm3, alters disease susceptibility. Specifically, Tgfbm2(129) and Tgfbm3(C57) synergize to reverse accentuated airway hyperresponsiveness (AHR) caused by low TGFß1 levels in Tgfb1(+/-) mice of the NIH/OlaHsd strain. Moreover, epistatic interaction between Tgfbm2(129) and Tgfbm3(C57) uncouples the inflammatory response to ovalbumin from those of airway remodeling and airway hyperresponsiveness, illustrating independent genetic control of these responses. We conclude that differential inheritance of genetic variants of Tgfbm genes alters biological responses to reduced TGFß1 signaling in an experimental asthma model. TGFß antagonists for treatment of lung diseases might therefore give diverse outcomes, dependent on genetic variation.


Subject(s)
Asthma/genetics , Epistasis, Genetic , Transforming Growth Factor beta1/genetics , Animals , Genetic Predisposition to Disease , Mice , Mice, Inbred C57BL , Mice, Transgenic
20.
Proc Natl Acad Sci U S A ; 109(40): 16354-9, 2012 Oct 02.
Article in English | MEDLINE | ID: mdl-22988107

ABSTRACT

Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on this and the proposed functions of CaCC, we hypothesized that TMEM16A inhibitors would negatively regulate both epithelial mucin secretion and ASM contraction. We used a high-throughput screen to identify small-molecule blockers of TMEM16A-CaCC channels. We show that inhibition of TMEM16A-CaCC significantly impairs mucus secretion in primary human airway surface epithelial cells. Furthermore, inhibition of TMEM16A-CaCC significantly reduces mouse and human ASM contraction in response to cholinergic agonists. TMEM16A-CaCC blockers, including those identified here, may positively impact multiple causes of asthma symptoms.


Subject(s)
Chloride Channels/metabolism , Mucins/metabolism , Muscle Contraction/physiology , Muscle, Smooth/physiology , Respiratory System/cytology , Respiratory System/metabolism , Animals , Anoctamin-1 , Cells, Cultured , Epithelial Cells/metabolism , Humans , Immunohistochemistry , Mice , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...