Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 48(9): 2289-2292, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37126256

ABSTRACT

The conventional belief propagation (BP) of the low-density parity-check (LDPC) is designed based on additive white Gaussian noise (AWGN) close to the Shannon limit; however, the correlated noise due to chromatic dispersion or square-law detection results in a performance penalty in the intensity modulation and direct-detection (IM/DD) system. We propose an iterative BP cascaded convolution neural network (CNN) decoder to mitigate the correlated channel noise. We use a model of correlated Gaussian noise to verify that the noise correlation can be identified by the CNN and the decoding performance is improved by the iterative processing. We successfully demonstrate the proposed method in a 50-Gb/s 4-ary pulse amplitude modulation (PAM-4) IM/DD system. The simulation results show that the proposed decoder can achieve a BER performance improvement which is robust to transmission distance and launch optical power. The experimental results show that the iterative BP-CNN decoder outperforms the standard BP decoder by 1.2 dB in received optical power over 25-km SSMF.

2.
Opt Express ; 30(20): 35526-35538, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36258502

ABSTRACT

In this paper, we propose a digital coherent demodulation architecture using fully interpretable deep neural networks (NNs). We show that all the conventional coherent digital signal processing (DSP) is deeply unfolded into a well-structured NN so that the established training algorithms in machine learning can be applied. In contrast to adding or replacing certain algorithms of existing DSP in coherent receivers, we replace all the coherent demodulation algorithms with a fully interpretable NN (FINN), making the whole NN interpretable. The FINN is modular and flexible to add or drop modules, including chromatic dispersion compensation (CDC), the digital back-propagation (DBP) algorithm for fiber nonlinearity compensation, carrier recovery and residual impairments. The resulted FINN can be quickly initialized by straightforwardly referring to the conventional DSP, and can also enjoy further performance enhancement in the nonlinear fiber transmissions by NN. We conduct a 132-Gb/s polarization multiplexed (PM)-16QAM transmission experiment over 600-km standard single mode fiber. The experimental results show that without fiber nonlinearity compensation, FINN-CDC obtains less than 0.06-dB SNR gain than chromatic dispersion compensation (CDC). However, with fiber nonlinearity compensation, 2-steps per span FINN-DBP (FINN-2sps-DBP) and FINN-1sps-DBP bring about 0.59-dB and 0.53-dB SNR improvement compared with the conventional 2sps-DBP and 1sps-DBP, respectively.


Subject(s)
Fiber Optic Technology , Signal Processing, Computer-Assisted , Equipment Design , Algorithms , Neural Networks, Computer
3.
Opt Express ; 27(14): 19664-19674, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31503723

ABSTRACT

We present a comparative study of equalization-enhanced phase noise (EEPN) and phase to amplitude (P2A) noise with chromatic dispersion (CD) pre- and post-compensation in single side-band (SSB) transmission and direct-detection (DD) systems, respectively. We analyze the interplay of laser phase noise and fiber dispersion on an optical SSB Nyquist shaped four-level pulse amplitude modulation (PAM-4) signal in a Kramers-Kronig (KK) receiver. Our main results show that the EEPN in a DD-KK receiver dominates the system noise with the relaxed signal-to-noise ratio (SNR). The P2A noise in CD post-compensation scheme is relaxed due to the complex filed recovery with KK receiver. The numerical simulations are implemented to illustrate the interplay of laser linewidth and fiber dispersion in both CD pre- and post-compensation scenarios. Compared with CD pre-compensation, 3-dB reduction of power spectral density (PSD) of P2A noise at the peak is alleviated with CD post-compensation. The laser linewidth has ~1 MHz release with CD post-compensation for a 56-Gbaud PAM-4 signal over 100-km standard single-mode fiber (SSMF) transmission.

4.
Opt Lett ; 43(10): 2406-2409, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29762604

ABSTRACT

We demonstrate seamless channel multiplexing and high bitrate superchannel transmission of coherent optical orthogonal frequency division multiplexing (CO-OFDM) data signals utilizing a dissipative Kerr soliton (DKS) frequency comb generated in an on-chip microcavity. Aided by comb line multiplication through Nyquist pulse modulation, the high stability and mutual coherence among mode-locked Kerr comb lines are exploited for the first time, to the best of our knowledge, to eliminate the guard intervals between communication channels and achieve full spectral density bandwidth utilization. Spectral efficiency as high as 2.625 bit/Hz/s is obtained for 180 CO-OFDM bands encoded with 12.75 Gbaud 8-QAM data, adding to the total bitrate of 6.885 Tb/s within a 2.295 THz frequency comb bandwidth. This Letter confirms that high coherence is the key superiority of Kerr soliton frequency combs over independent laser diodes, as a multi-spectral coherent laser source for high-bandwidth high-spectral-density transmission networks.

5.
Opt Express ; 26(6): 6629-6638, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29609350

ABSTRACT

We present the design and optimization of the optical single side-band (SSB) Nyquist four-level pulse amplitude modulation (PAM-4) transmission using dual-drive Mach-Zehnder modulator (DDMZM)modulation and direct detection (DD), aiming at the C-band cost-effective, high-speed and long-distance transmission. At the transmitter, the laser line width should be small to avoid the phase noise to amplitude noise conversion and equalization-enhanced phase noise due to the large chromatic dispersion (CD). The optical SSB signal is generated after optimizing the optical modulation index (OMI) and hence the minimum phase condition which is required by the Kramers-Kronig (KK) receiver can also be satisfied. At the receiver, a simple AC-coupled photodiode (PD) is used and a virtual carrier is added for the KK operation to alleviate the signal-to-signal beating interference (SSBI).A Volterra filter (VF) is cascaded for remaining nonlinearities mitigation. When the fiber nonlinearity becomes significant, we elect to use an optical band-pass filter with offset filtering. It can suppress the simulated Brillouin scattering and the conjugated distortion by filtering out the imaging frequency components. With our design and optimization, we achieve single-channel, single polarization 102.4-Gb/s Nyquist PAM-4 over 800-km standard single-mode fiber (SSMF).

SELECTION OF CITATIONS
SEARCH DETAIL
...