Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
ACS Macro Lett ; 13(7): 882-888, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38953383

ABSTRACT

We report a "grafting to" method for stably grafting high-molecular-weight polymer brushes on both active and inert surfaces using tadpole-like single-chain particles (TSCPs) with an interactive "head" as grafting units. The TSCPs can be efficiently synthesized through intrachain cross-linking one block of a diblock copolymer; the "head" is the intrachain cross-linked single-chain particle, and the "tail" is a linear polymer chain that has a contour length up to micrometers. When grafted to a surface, the "head", integrating numerous interacting groups, can synergize multiple weak interactions with the surface, thereby enabling stable grafting of the "tail" on both active and traditionally challenging inert surfaces. Because the structural parameters and composition of the "heads" and "tails" can be separately adjusted over a wide range, the interactivity of the "heads" with the surface and properties of the brushes can be controlled orthogonally, accomplishing surface brushes that cannot be achieved by existing methods.

2.
J Autoimmun ; 124: 102713, 2021 11.
Article in English | MEDLINE | ID: mdl-34390919

ABSTRACT

Despite the existence of potent anti-inflammatory biological drugs e.g., anti-TNF and anti IL-6 receptor antibodies, for treating chronic inflammatory and autoimmune diseases, these are costly and not specific. Cheaper oral available drugs remain an unmet need. Expression of the acute phase protein Serum Amyloid A (SAA) is dependent on release of pro-inflammatory cytokines IL-1, IL-6 and TNF-α during inflammation. Conversely, SAA induces pro-inflammatory cytokine secretion, including Th17, leading to a pathogenic vicious cycle and chronic inflammation. 5- MER peptide (5-MP) MTADV (methionine-threonine-alanine-aspartic acid-valine), also called Amilo-5MER, was originally derived from a sequence of a pro-inflammatory CD44 variant isolated from synovial fluid of a Rheumatoid Arthritis (RA) patient. This human peptide displays an efficient anti-inflammatory effects to ameliorate pathology and clinical symptoms in mouse models of RA, Inflammatory Bowel Disease (IBD) and Multiple Sclerosis (MS). Bioinformatics and qRT-PCR revealed that 5-MP, administrated to encephalomyelytic mice, up-regulates genes contributing to chronic inflammation resistance. Mass spectrometry of proteins that were pulled down from an RA synovial cell extract with biotinylated 5-MP, showed that it binds SAA. 5-MP disrupted SAA assembly, which is correlated with its pro-inflammatory activity. The peptide MTADV (but not scrambled TMVAD) significantly inhibited the release of pro-inflammatory cytokines IL-6 and IL-1ß from SAA-activated human fibroblasts, THP-1 monocytes and peripheral blood mononuclear cells. 5-MP suppresses the pro-inflammatory IL-6 release from SAA-activated cells, but not from non-activated cells. 5-MP could not display therapeutic activity in rats, which are SAA deficient, but does inhibit inflammations in animal models of IBD and MS, both are SAA-dependent, as shown by others in SAA knockout mice. In conclusion, 5-MP suppresses chronic inflammation in animal models of RA, IBD and MS, which are SAA-dependent, but not in animal models, which are SAA-independent.


Subject(s)
Arthritis, Rheumatoid/immunology , Hyaluronan Receptors/genetics , Inflammation/immunology , Inflammatory Bowel Diseases/immunology , Multiple Sclerosis/immunology , Peptides/genetics , Serum Amyloid A Protein/immunology , Animals , Anti-Inflammatory Agents/therapeutic use , Autoimmunity , Cells, Cultured , Computational Biology , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation Mediators/metabolism , Mice , Mice, Knockout , Peptides/therapeutic use , Serum Amyloid A Protein/genetics
3.
J Colloid Interface Sci ; 600: 872-881, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34052536

ABSTRACT

Constructing electrocatalysts with plentiful active sites, great mass transfer ability, and high electrical conductivity is critical to realize efficient hydrogen evolution reaction (HER). Hierarchically porous cobalt phosphide/N-doped nanotubular carbon networks (CoP/NCNs) that have all the features were fabricated in this work. For the fabrication, the polymeric worm-like micelles (PWs) with a large aspect ratio were coated by a uniform nanolayer of Zn-Co zeolitic imidazolate frameworks (Zn-Co-ZIFs) on their surface, resulting in the hybrid nanofibers PWs@Zn-Co-ZIFs (HPWs). Inheriting the randomly curved and entanglement properity of PWs, the rigid HPWs formed hybrid networks with the packing voids sized tens to 200 nm. Then, the hybrid networks were treated by pyrolysis-oxidation-phosphidation and ZnO-removal processes, leading to the hierarchically porous CoP/NCNs. In the CoP/NCNs, there are plentiful CoP nanoparticles embedded on the surface of conductive carbon network and fully exposed. When used for HER electrocatalyst, the CoP/NCNs only need small overpotentials (98 and 118 mV in acid and alkaline electrolyte) at 10 mA cm-2. This novel strategy is instructive for tailoring hierarchically porous transition metal phosphide/carbon nanocomposites as promising electrocatalysts.


Subject(s)
Hydrogen , Nanocomposites , Carbon , Micelles , Porosity
4.
Macromol Rapid Commun ; 42(2): e2000504, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33210372

ABSTRACT

Herein, efficient fabrication of polymersomes that have unique and nonequilibrium morphologies is reported. Starting from preparing big polymeric vesicles sized around 2 µm with a flexible but crosslinkable structure, a controllable morphological transformation process from the vesicles via prolate vesicles and the pearl-chain-like structure, which are the two intermediate structures, to vesicle-end-capped tubes is conducted. Significantly, each of the intermediates is a regular polymersome and occupies a distinct phase space in the transformation process and thus can be separately processed and prepared. By crosslinking the structures, respectively, regular polymersomes with unique but stable morphologies are fabricated. Furthermore, the 1D polymersomes contain narrow necks. These narrow necks are sensitive to ultrasound vibration and broken by gentle ultrasound treatment to form regular open-ended tubes and open-ended vesicles, which are nonequilibrium but stable morphologies and difficult to prepare by existing methods.


Subject(s)
Polymers
5.
ACS Omega ; 4(17): 17148-17159, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31656888

ABSTRACT

Graphene-like g-C3N4 nanosheets (NSs) have been successfully synthesized with a modified polymerization process of melamine by cocondensation with volatile salts. Volatile ammonium salts such as urea-NH4Cl/(NH4)2SO4/(NH4)3PO4 were added with melamine to modulate the thermodynamic process during polymerization and optimize the structure formation in situ. The surface area, surface structure, and surface charge state of the obtained g-C3N4 NSs could be controlled by simply adjusting the mass ratio of the melamine/volatile ammonium salt. As a consequence, the g-C3N4 NSs exhibited much higher activity than bulk g-C3N4 for the photocatalytic degradation of target pollutants (rhodamine B, methylene blue, and methyl orange), and it also exhibited greater hydrogen evolution under visible light irradiation with an optimal melamine/volatile ammonium salt ratio. The as-prepared g-C3N4 NSs with melamine-urea-NH4Cl showed the highest visible light photocatalytic H2 production activity of 1853.8 µmol·h-1·g-1, which is 9.4 times higher than that of bulk g-C3N4 from melamine. The present study reveals that the synergistic effect of the enhanced surface area, surface structure, and surface charge state is the key for the enhancement of photocatalytic degradation and hydrogen evolution, which could be controlled by the proposed strategy. The result is a good explanation for the hypothesis that adding properly selected monomers can truly regulate the polymerization process of melamine, which is beneficial for obtaining g-C3N4 NSs without molecular self-assembly. Considering the inexpensive feedstocks used, a simple synthetic controlling method provides an opportunity for the rational design and synthesis, making it decidedly appealing for large-scale production of highly photocatalytic, visible-sensitizable, metal-free g-C3N4 photocatalysts.

6.
Inflammation ; 42(5): 1808-1820, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31243649

ABSTRACT

Hyaluronan (HA) fragments have been proposed to elicit defensive or pro-inflammatory responses in many cell types. For articular chondrocytes in an inflammatory environment, studies have failed to reach consensus on the endogenous production or effects of added HA fragments. The present study was undertaken to resolve this discrepancy. Cultured primary human articular chondrocytes were exposed to the inflammatory cytokine IL-1ß, and then tested for changes in HA content/size in conditioned medium, and for the expression of genes important in HA binding/signaling or metabolism, and in other catabolic/anabolic responses. Changes in gene expression caused by enzymatic degradation of endogenous HA, or addition of exogenous HA fragments, were examined. IL-1ß increased the mRNA levels for HA synthases HAS2/HAS3 and for the HA-binding proteins CD44 and TSG-6. mRNA levels for TLR4 and RHAMM were very low and were little affected by IL-1ß. mRNA levels for catabolic markers were increased, while type II collagen (α1(II)) and aggrecan were decreased. HA concentration in the conditioned medium was increased, but the HA was not degraded. Treatment with recombinant hyaluronidase or addition of low endotoxin HA fragments did not elicit pro-inflammatory responses. Our findings showed that HA fragments were not produced by IL-1ß-stimulated human articular chondrocytes in the absence of other sources of reactive oxygen or nitrogen species, and that exogenous HA fragments from oligosaccharides up to about 40 kDa in molecular mass were not pro-inflammatory agents for human articular chondrocytes, probably due to low expression of TLR4 and RHAMM in these cells.


Subject(s)
Cartilage, Articular/cytology , Chondrocytes/drug effects , Hyaluronic Acid/pharmacology , Inflammation/etiology , Cells, Cultured , Chondrocytes/cytology , Gene Expression Regulation/drug effects , Humans , Hyaluronan Receptors/metabolism , Peptide Fragments/pharmacology
7.
ACS Macro Lett ; 8(10): 1222-1226, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-35651169

ABSTRACT

Herein, we report an example of self-driven morphological transition and the unique dissociation behavior of polymeric assemblies. Polymeric nanogels were introduced into the shell of polymeric assemblies and used as a powerful platform to endow the assemblies with unique properties and behaviors. It is exhibited that the nanogel can host an intrananogel cross-linking reaction and thus contracts automatically to change the geometrical packing parameters of the building blocks, driving morphological transitions of the assemblies; the transitions are self-driven without any external stimuli. Additionally, when the nanogels in the shell expand, the assemblies dissociate into small fragments even when the core is in a frozen state; in existing studies, polymeric assemblies with a frozen core cannot dissociate, except the core becomes dynamic under the stimuli. Both the self-driven morphological transition and the dissociation behavior are unique and have never been reported before.

8.
Chem Commun (Camb) ; 54(79): 11084-11087, 2018 Oct 02.
Article in English | MEDLINE | ID: mdl-30113040

ABSTRACT

We report the first example of endowing the surface structure of a polymeric assembly with nearly atomic-level precision. The solenoidal wrapping of a DNA chain around the surface of a nanofibre transcribes the precise sequence structure of the DNA onto the nanofibre surface, resulting in a precise surface structure.

9.
Glycobiology ; 28(3): 137-147, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29300896

ABSTRACT

A method for specific quantification of hyaluronan (HA) concentration using AlphaScreen® (Amplified Luminescent Proximity Homogeneous Assay) technology is described. Two types of hydrogel-coated and chromophore-loaded latex nanobeads are employed. The proximity of the beads in solution is detected by excitation of the donor bead leading to the production of singlet oxygen, and chemiluminescence from the acceptor bead upon exposure to singlet oxygen. In the HA assay, the donor bead is modified with streptavidin, and binds biotin-labeled HA. The acceptor bead is modified with Ni(II), and is used to bind a specific recombinant HA-binding protein (such as HABP; aggrecan G1-IGD-G2) with a His-tag. Competitive inhibition of the HA-HABP interaction by free unlabeled HA in solution is used for quantification. The assay is specific for HA, and not dependent on HA molecular mass above the decasaccharide. HA can be quantified over a concentration range of approximately 30-1600 ng/mL using 2.5 µL of sample, for a detectable mass range of approximately 0.08-4 ng HA. This sensitivity of the AlphaScreen assay is greater than existing ELISA-like methods, due to the small volume requirements. HA can be detected in biological fluids using the AlphaScreen assay, after removal of bound proteins from HA and dilution or removal of other interfering proteins and lipids.


Subject(s)
Hyaluronic Acid/analysis , Luminescent Measurements , Chondrocytes/chemistry , Humans
10.
RSC Adv ; 8(2): 1001-1004, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-35538966

ABSTRACT

Porous materials with well-defined porosity have advantages in a wide range of applications, including filtration media, catalysis, and electrodes. The bottom-up fabrication of inverse opals have promised to provide those nanostructures, but fabrication of these materials is often plagued with large numbers of defects and macro-scale cracks. Here, we present a method for making nanostructured porous clay films with well defined pore size that are crack free over a large area (multiple cm2).

11.
ACS Macro Lett ; 7(11): 1278-1282, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-35651249

ABSTRACT

We report the first example of the fabrication of pure, single-chain Janus particles (SCJPs). The SCJPs were prepared by double-cross-linking an A-b-B diblock copolymer in a common solvent. Inevitably, the double-cross-linking led to a mixture containing not only SCJPs but also multichain particles and irregular single-chain particles. Under well-controlled conditions, the SCJPs in the mixture self-assemble with high exclusivity to form regularly structured macroscopic assemblies (MAs) with a crystal-like appearance that precipitate from the suspension. Pure SCJPs that are uniform in size, shape and Janus structure were efficiently prepared by collection and dissociation of the MAs. Block copolymers with different structural parameters were successfully used for the exclusive self-assembly (ESA), and pure SCJPs with varied structural parameters were produced, confirming the reliability of the ESA method.

12.
ACS Appl Mater Interfaces ; 9(25): 21083-21088, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28616964

ABSTRACT

We report a facile and versatile method for fabrication of multiheteroatom-doped hierarchically porous carbon with a large specific surface area, using the 3D network constructed by ZIF-8 coated wormlike micelles as template. The uniform and highly pure wormlike micelles developed in our laboratory is essential, because they not only are responsible for the formation of hierarchical porosity, but also play as a versatile platform for multiheteroatoms doping. In a primary experiment, S, N, B, and P heteroatoms were doped conveniently and the resultant porous carbons have the excellent oxygen reduction reaction performance comparable to the commercial 20% Pt/C.

13.
ACS Macro Lett ; 6(6): 580-585, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-35650841

ABSTRACT

Nanosized polymeric Janus particles (NPJPs) have important applications in a variety of theoretical and practical research fields. However, the methods that are versatile and can prepare NPJPs highly efficiently are very limited. Herein, we reported a two-step thermodynamically controlled preparation of NPJPs with a high yield using a diblock copolymer as the precursor. At the first step, A-b-B coassembled in the solution with a partner diblock copolymer C-b-B to form the mixed shell micelles (MSMs) with B core and A/C mixed shell. Then, intramicellarly covalently cross-linking the A block chains resulted in the complete phase separation of A and C chains in the mixed shell, leading to the direct conversion of the MSMs into NPJPs. The first step, diblock copolymer micellization, is known as a thermodynamically controlled process, and we also made the second step, conversion from MSMs to NPJPs, be thermodynamically controlled due to the application of covalent cross-linking. As the result, the conversion efficiency is close to 100%. Besides, it was further confirmed that the method can be applied to different systems and used to tune the Janus balance. Therefore, this conversion should be very significant for the fabrication and application of the NPJPs.

14.
ACS Appl Mater Interfaces ; 7(3): 1848-58, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25539141

ABSTRACT

Polyelectrolyte multilayers (PEMs), assembled from weak polyelectrolytes, have often been proposed for use as smart or responsive materials. However, such response to chemical stimuli has been limited to aqueous environments with variations in ionic strength or pH. In this work, a large in magnitude and reversible transition in both the swelling/shrinking and the viscoelastic behavior of branched polyethylenimine/poly(acrylic acid) multilayers was realized in response to exposure with various polar organic solvents (e.g., ethanol, dimethyl sulfoxide, and tetrahydrofuran). The swelling of the PEM decreases with an addition of organic content in the organic solvent/water mixture, and the film contracts without dissolution in pure organic solvent. This large response is due to both the change in dielectric constant of the medium surrounding the film as well as an increase in hydrophobic interactions within the film. The deswelling and shrinking behavior in organic solvent significantly enhances its elasticity, resulting in a stepwise transition from an initially liquid-like film swollen in pure water to a rigid solid in pure organic solvents. This unique and recoverable transition in the swelling/shrinking behaviors and the rheological performances of weak polyelectrolyte multilayer film in organic solvents is much larger than changes due to ionic strength or pH, and it enables large scale actuation of a freestanding PEM. The current study opens a critical pathway toward the development of smart artificial materials.

15.
Bioorg Med Chem ; 22(8): 2535-41, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24680058

ABSTRACT

A series of CR2(OH)-diarylpyrimidine derivatives (CR2(OH)-DAPYs) featuring a hydrophobic group at CH(OH) linker between wing I and the central pyrimidine were synthesized and evaluated for their anti-HIV activity in MT-4 cell cultures. All the target compounds except for compound 3k displayed inhibitory activity against HIV-1 wild-type with EC50 values ranging from 7.21±1.99 to 0.067±0.006 µM. Among them, compound 3d showed the most potent anti-HIV-1 activity (EC50=0.067±0.006 µM, SI>592), which was approximately 2-fold more potent than the reference drugs nevirapine (NVP) and delaviridine (DLV) in the same assay. In addition, the binding modes with HIV-1 RT and the preliminary SAR studies of these new derivatives were also investigated.


Subject(s)
HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/enzymology , Reverse Transcriptase Inhibitors/chemistry , Binding Sites , Cell Line , HIV Reverse Transcriptase/metabolism , Humans , Molecular Docking Simulation , Protein Structure, Tertiary , Pyrimidines/chemistry , Pyrimidines/metabolism , Reverse Transcriptase Inhibitors/metabolism , Structure-Activity Relationship
16.
Phys Chem Chem Phys ; 16(22): 10267-73, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24728290

ABSTRACT

Self-healing is the ability of a material to repair mechanical damage. The lifetime of a coating or film might be lengthened with this capacity. Water enabled self-healing of polyelectrolyte multilayers has been reported, using systems that grow via the interdiffusion of polyelectrolyte chains. Due to high mobility of the polyelectrolyte chains within the assembly, it is possible for lateral diffusion to heal over scratches. The influence of metal ions and nanoparticles on this property has, however, not been previously studied. Here we demonstrate that the incorporation of silver nanoparticles reduced in situ within the branched poly(ethyleneimine)-poly(acrylic acid) polyelectrolyte multilayer structure speeds the ability of the multilayer assembly to self-heal. This enhancement of property seems to not be due to changes in mechanical properties but rather in enhanced affinity to water and plasticization that enables the film to better swell.


Subject(s)
Metal Nanoparticles/chemistry , Polymethacrylic Acids/chemistry , Silver/chemistry , Electrolytes/chemistry , Water/chemistry
17.
ACS Macro Lett ; 3(10): 1092-1095, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-35610799

ABSTRACT

Fluorescent organic-inorganic composite materials exhibiting "turn-on" response are often based on conjugated small molecules. Conjugated polymers, however, often exhibit a "turn-off" response in combination with metal ions. Here we present fluorescent turn-on behavior of a branched poly(ethylene imine)-poly(acrylic acid)-Ag+ ion complex in a thin film. The material is characterized by UV-vis, spectrofluorometry, XPS, and ICP-MS. The turn-on response is exhibited only with all three components present, implying that the optically active metal coordination complex contains amine and carboxylic acid groups. This behavior is observed in the solid state, meaning this material could be easily integrated into devices. We demonstrate sensing of formaldehyde vapor as well as halide containing solutions based on fluorescence quenching. This fluorescent material is simply made using the layer-by-layer technique and commercially available polymers.

18.
Langmuir ; 29(42): 12959-68, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24059689

ABSTRACT

Layer-by-layer assembly of films containing metal ions was investigated. A complex between various metal ions and branched polyethyleneimine is formed in solution and then assembled into multilayer films with poly(acrylic acid). The metal-ligand complex formation results in brightly colored materials that deposit as thick layers. Cu(2+)-containing films were chosen as a model for studying the disassembly of these films in response to various stimuli, including pH, salt, and surfactants. The range of pH instability corresponds to the pH range over which pores are formed in the film. We demonstrate controllable disassembly of these materials, which could be used for antifungal or antibacterial applications.

19.
ACS Macro Lett ; 2(9): 826-829, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-35606988

ABSTRACT

Omniphobic and slippery coatings from lubricant-infused, textured surfaces have recently been shown to have superior properties including low contact angle hysteresis and low sliding angles. Here, we present an omniphobic slippery surface prepared by infusing a fluorinated lubricant into a porous polyelectrolyte multilayer. These surfaces repel water and decane with sliding angles as low as 3°. One advantage of polyelectrolyte multilayers is the ease with which they can coat nonplanar surfaces, demonstrated here.

20.
J Mater Sci Mater Med ; 21(6): 1829-35, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20372986

ABSTRACT

Amino-bearing polymers, coated with apatite or similar minerals, have attracted significant attention for their potential in medical applications. In this study, an amino-terminated hyperbranched polybenzimidazole (HBPBI) membrane was used as a substrate for apatite growth. The membrane was soaked in solutions of CaCl2, Na2HPO4 and SBF to yield an apatite coating. The structure and morphology of the layers were characterized by FTIR-ATR, XRD and FESEM. The results indicate that the high densities of amino, imide and imidazole groups on the amino-terminated HBPBI membrane provide active sites for the growth of apatite.


Subject(s)
Polymers/chemistry , Apatites/analysis , Apatites/chemistry , Polymers/analysis , Solutions/analysis , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...