Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr ; 150(8): 2070-2076, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32470983

ABSTRACT

BACKGROUND: Dietary supplemental nicotinamide is used to treat hyperphosphatemia in humans. However, the mechanisms of its impact on body phosphorus homeostasis remain unclear. OBJECTIVE: This study was to determine effects and molecular mechanisms of 3 dietary nicotinamide concentrations on body phosphorus homeostasis in laying hens. METHODS: Hy-Line Brown layers (total = 21; 40 wk old; body weight: 1,876 ± 24 g) were individually housed (n = 7) and fed a corn-soybean meal-based diet supplemented with nicotinamide at 20 (N20), 140 (N140), and 1000 (N1000) mg/kg for 21 d. Serum phosphorus and fibroblast growth factor 23 (FGF23) concentrations, phosphorus and calcium excretion, and mRNA and/or protein of type II sodium-phosphate co-transporters (NPt2a, NPt2ab) and FGF23 and FGF23 receptors were measured in the intestines, calvaria, kidney, and liver. RESULTS: Hens in the N1000 group had a 16% lower serum phosphorus concentration and 22% greater phosphorus excretion than those in the N20 or N140 group (P ≤ 0.05). Compared with hens in the N20 group, hens in the N140 and N1000 groups, which did not differ, had 15-21% lower serum FGF23 concentrations, 19-22% greater calcium excretion, 43-56% lower ileum NPT2b protein production, and 1.5- to 1.6-fold greater kidney NPT2a protein production, respectively (all differences at P ≤ 0.05). CONCLUSIONS: Supplementing high concentrations of nicotinamide in diets for laying hens led to accelerated phosphorus and calcium excretions and decreased serum phosphorus and FGF23 concentrations, which were associated with downregulated intestinal NPt2b protein production. Our findings exclude kidney NPt2a protein production as a primary mechanism for the nicotinamide-induced body phosphorus loss.


Subject(s)
Chickens , Gene Expression Regulation/drug effects , Niacinamide/pharmacology , Phosphorus/metabolism , Sodium-Phosphate Cotransporter Proteins, Type II/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Supplements , Dose-Response Relationship, Drug , Female , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Glucuronidase/genetics , Glucuronidase/metabolism , Intestines/drug effects , Intestines/physiology , Kidney/drug effects , Kidney/metabolism , Klotho Proteins , Niacinamide/administration & dosage , Oviposition , Receptors, Fibroblast Growth Factor/genetics , Receptors, Fibroblast Growth Factor/metabolism , Sodium-Phosphate Cotransporter Proteins, Type II/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...