Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38674501

ABSTRACT

High temperatures have adverse effects on the yield and quality of vegetables. Bok choy, a popular vegetable, shows varying resistance to heat. However, the mechanism underlying the thermotolerance of bok choy remains unclear. In this study, 26 bok choy varieties were identified in screening as being heat-resistant at the seedling stage; at 43 °C, it was possible to observe obvious heat damage in different bok choy varieties. The physiological and biochemical reactions of a heat-tolerant cultivar, Jinmei (J7), and a heat-sensitive cultivar, Sanyueman (S16), were analyzed in terms of the growth index, peroxide, and photosynthetic parameters. The results show that Jinmei has lower relative conductivity, lower peroxide content, and higher total antioxidant capacity after heat stress. We performed transcriptome analysis of the two bok choy varieties under heat stress and normal temperatures. Under heat stress, some key genes involved in sulfur metabolism, glutathione metabolism, and the ribosome pathway were found to be significantly upregulated in the heat-tolerant cultivar. The key genes of each pathway were screened according to their fold-change values. In terms of sulfur metabolism, genes related to protease activity were significantly upregulated. Glutathione synthetase (GSH2) in the glutathione metabolism pathway and the L3e, L23, and S19 genes in the ribosomal pathway were significantly upregulated in heat-stressed cultivars. These results suggest that the total antioxidant capacity and heat injury repair capacity are higher in Jinmei than in the heat-sensitive variety, which might be related to the specific upregulation of genes in certain metabolic pathways after heat stress.

2.
Arch Virol ; 169(1): 15, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38163823

ABSTRACT

Rhizoctonia solani endornavirus 8 (RsEV8) was isolated from strain XY175 of Rhizoctonia solani AG-1 IA. The full-length genome of RsEV8 is 16,147 nucleotides (nt) in length and contains a single open reading frame that encodes a large polyprotein of 5227 amino acids. The polyprotein contains four conserved domains: viral methyltransferase, putative DEAH box helicase, viral helicase, and RNA-dependent RNA polymerase (RdRp). RsEV8 has a shorter 3'-UTR (58 nt) and a longer 5'-UTR (404 nt). A multiple sequence alignment indicated that the RdRp of RsEV8 possesses eight typical RdRp motifs. According to a BLASTp analysis, RsEV8 shares 39.31% sequence identity with Rhizoctonia cerealis endornavirus-1084-7. Phylogenetic analysis demonstrated that RsEV8 clusters with members of the genus Betaendornavirus.


Subject(s)
Fungal Viruses , RNA Viruses , Phylogeny , Genome, Viral , Rhizoctonia/genetics , RNA-Dependent RNA Polymerase/genetics , Polyproteins/genetics , Open Reading Frames , RNA, Viral/genetics
3.
Physiol Plant ; 175(2): e13908, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37022777

ABSTRACT

Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) belongs to the Brassica genus of the Cruciferae family, and its leaf curl is a typical feature that distinguishes Wucai from other nonheading cabbage subspecies. Our previous research found that plant hormones were involved in the development of the leaf curl in Wucai. However, the molecular mechanisms and the hormones regulating the formation of leaf curl in Wucai have not yet been reported. This study aimed to understand the molecular functions related to hormone metabolism during the formation of leaf curl in Wucai. A total of 386 differentially expressed genes (DEGs) were identified by transcriptome sequencing of two different morphological parts of the same leaf of Wucai germplasm W7-2, and 50 DEGs were found to be related to plant hormones, which were mainly involved in the auxin signal transduction pathway. Then, we measured the content of endogenous hormones in two different forms of the same leaf of Wucai germplasm W7-2. A total of 17 hormones with differential content were identified, including auxin, cytokinins, jasmonic acids, salicylic acids, and abscisic acid. And we found that treatment with auxin transport inhibitor N-1-naphthylphthalamic acid can affect the leaf curl phenotype of Wucai and pak choi (Brassica rapa L. subsp. Chinensis). These results indicated that plant hormones, especially auxin, are involved in developing the leaf curl of Wucai. Our findings provide a potentially valuable reference for future research on the development of leaf curls.


Subject(s)
Brassica , Brassica/genetics , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Hormones/metabolism , Gene Expression Regulation, Plant
4.
Genes (Basel) ; 14(2)2023 02 05.
Article in English | MEDLINE | ID: mdl-36833342

ABSTRACT

Late embryogenesis abundant (LEA) proteins are important developmental proteins in the response of plants to abiotic stress. In our previous study, BcLEA73 was differentially expressed under low-temperature stress. Herein, we combined bioinformatics analysis, subcellular localization, expression assays, and stress experiments (including salt, drought, and osmotic stress) to identify and analyze the BcLEA gene family. Gene cloning and functional analysis of BcLEA73 were performed in tobacco and Arabidopsis. Based on the sequence homology and the available conservative motif, 82 BrLEA gene family members were identified and were divided into eight subfamilies in the genome-wide database of Chinese cabbage. The analysis showed that the BrLEA73 gene was located on chromosome A09 and belonged to the LEA_6 subfamily. Quantitative real-time PCR analysis indicated that the BcLEA genes were differentially expressed to varying degrees in the roots, stems, leaves, and petioles of Wucai. The overexpressed BcLEA73 transgenic plants exhibited no significant differences in root length and seed germination rates compared to the wild-type (WT) plants under control conditions. Under salt and osmotic stress treatment, the root length and seed germination rates of the BcLEA73-OE strain were significantly greater than those of WT plants. Under salt stress, the total antioxidant capacity (T-AOC) of the BcLEA73-OE lines increased significantly, and the relative conductivity, (REL), hydrogen peroxide (H2O2) content, and superoxide anion (O2-) production rate decreased significantly. Under drought treatment, the survival rate of the BcLEA73-OE lines was significantly higher than that of WT plants. These results showed that the BcLEA73 gene of Wucai functions in enhancing the tolerance of plants to salt, drought, and osmotic stress. This study provides a theoretical basis to explore the relevant functions of the BcLEA gene family members of Wucai.


Subject(s)
Arabidopsis , Brassica , Brassica/metabolism , Plant Proteins/genetics , Hydrogen Peroxide/metabolism , Stress, Physiological/genetics , Salt Stress , Arabidopsis/genetics
5.
Ecotoxicol Environ Saf ; 248: 114316, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36423369

ABSTRACT

Biochar, a cost-effective amendment, has been reported to play pivotal roles in improving soil fertility and immobilizing soil pollutants due to its well-developed porous structure and tunable functionality. However, the properties of biochar and soils can vary inconsistently after field application. This may affect the remediation of biochar on heavy metal (HM)-contaminated soil being altered. Therefore, we selected lettuce as a model crop to determine the effects of short-term, long-term, and reapplication of biochar on soil physicochemical properties, microbial community, HM bioavailability, and plant toxicity. Our investigation revealed that the long-term application of biochar remarkably improved soil fertility, increased the relative abundance of the phylum Proteobacteria which was highly resistant to HMs, and reduced the abundance of phylum Acidobacteria. These changes in soil properties decreased the accumulation of Cd and Pb in lettuce tissues. The short- and long-term applications of biochar had no substantial effects on biomass, quality, and photosynthesis of lettuce. Moreover, the short-term and reapplication of biochar had no significant effects on soil bacterial communities but decreased the accumulation of Cd and Pb in lettuce tissues. It showed that the changes in the physical, chemical, and biological properties of soil after long-term application of biochar promoted the remediation of HM-contaminated soil. Furthermore, microbial community compositions varied with metal stress and biochar application, while the relative abundance of the phylum Actinobacteria in HM-contaminated soil with long-term biochar application was markedly higher than in HM-contaminated soil without biochar application.


Subject(s)
Cadmium , Metals, Heavy , Lead , Soil , Lactuca
6.
Ecotoxicol Environ Saf ; 230: 113107, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34959014

ABSTRACT

It has been widely reported that biochar can be used as a cost-effective amendment to immobilize of heavy metal contaminants in soil. While less research has been conducted on effect of biochar long-term field aging on its properties and the adsorption capability. In this study, the characteristics of aged biochar were investigated by comprehensive characterization to elucidate its mechanism transformation for heavy metal immobilization. Our results showed that, compared to fresh biochar, the relative content of C of aged biochar was reduced by 34.12%, while O was increased by 8.79%. Additionally, the specific surface area, pore volume, pore size and oxygen-containing functional groups of aged biochar were significantly increased compared to the fresh biochar. Batch adsorption experiment indicated that the maximum adsorption for Cd2+ (Qm = 32.157 mg/g) and Pb2+ (Qm = 39.216 mg/g) on aged biochar surface was much larger than that of Cd2+ (Qm = 7.573 mg/g) and Pb2+ (Qm = 8.134 mg/g) on fresh biochar. The underlying adsorption mechanisms for Cd2+ and Pb2+ on fresh biochar were dominated by coprecipitation, cation exchange and cation-π interaction, whereas surface complexation and cation exchange appeared to be more vital for aged biochar, as more active adsorption sites and Oxygen-containing functional groups were formed on its surface during aging, which was well explained by BET, XPS, FTIR and Elemental Analysis. Our study found that the physicochemical properties of biochar changed significantly during field aging. Although these changes increased the adsorption of heavy metals by biochar, the reduced stability of biochar to passivated heavy metal ions.

7.
Front Plant Sci ; 7: 939, 2016.
Article in English | MEDLINE | ID: mdl-27443222

ABSTRACT

Chinese cabbage (Brassica rapa ssp. chinensis) is an economically and agriculturally significant vegetable crop and is extensively cultivated throughout the world. Heat stress disturbs cellular homeostasis and causes visible growth inhibition of shoots and roots, severe retardation in growth and development, and even death. However, there are few studies on the transcriptome profiling of heat stress in non-heading Chinese cabbage. In this study, we investigated the transcript profiles of non-heading Chinese cabbage from heat-sensitive and heat-tolerant varieties "GHA" and "XK," respectively, in response to high temperature using RNA sequencing (RNA seq). Approximately 625 genes were differentially expressed between the two varieties. The responsive genes can be divided into three phases along with the time of heat treatment: response to stimulus, programmed cell death and ribosome biogenesis. Differentially expressed genes (DEGs) were identified in the two varieties, including transcription factors (TFs), kinases/phosphatases, genes related to photosynthesis and effectors of homeostasis. Many TFs were involved in the heat stress response of Chinese cabbage, including NAC069 TF which was up-regulated at all the heat treatment stages. And their expression levels were also validated by quantitative real-time-PCR (qRT-PCR). These candidate genes will provide genetic resources for further improving the heat-tolerant characteristics in non-heading Chinese cabbage.

8.
J Plant Physiol ; 171(15): 1392-400, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25046760

ABSTRACT

To study the mechanisms of drought inhibiting photosynthesis and the role of PAs and ethylene, the photosynthetic rate (Pn), the maximal photochemical efficiency of PSII (Fv/Fm), the intercellular CO2 concentration (Ci), photorespiratory rate (Pr), the amount of chlorophyll (chl), antioxidant enzyme activity, ethylene levels, RuBPC (ribulose-1,5-bisphosphate carboxylase) activity and endogenous polyamine levels of pakchoi were examined, and an inhibitor of S-adenosylmethionine decarboxylase (SAMDC) and an inhibitor of ethylene synthesis and spermidine (Spd) were used to induce the change of endogenous polyamine levels. The results show that drought induced a decrease in Pn and RuBPC activity, an increase in the intercellular CO2 concentration (Ci), but no change in the actual photochemical efficiency of PSII (ΦPSII), and chlorophyll content. In addition, drought caused an increase in the free putrescine (fPut), the ethylene levels, a decrease in the Spd and spermine (Spm) levels, and the PAs/fPut ratio in the leaves. The exogenous application of Spd and amino oxiacetic acid (AOAA, an inhibitor of ethylene synthesis) markedly reversed these drought-induced effects on polyamine, ethylene, Pn, the PAs/fPut ratio and RuBPCase activity in leaves. Methylglyoxal-bis(guanylhydrazone) (MGBG), an inhibitor of SAMDC resulting in the inability of activated cells to synthesize Spd and Spm, exacerbates the negative effects induced by drought. These results suggest that the decrease in Pn is at least partially attributed to the decrease of RuBPC activity under drought stress and that drought inhibits RuBPC activity by decreasing the ratio of PAs/fPut and increasing the release of ethylene.


Subject(s)
Brassica rapa/physiology , Ethylenes/metabolism , Plant Growth Regulators/metabolism , Polyamines/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Antioxidants/metabolism , Brassica rapa/enzymology , Droughts , Photosynthesis , Ribulosephosphates/metabolism
9.
J Plant Physiol ; 167(1): 47-53, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19651461

ABSTRACT

This study investigated the effects of cinnamic acid (CA) on ribulose-1,5-bisphosphate carboxylase (RuBPC) activity and the endogenous polyamine levels of cowpea leaves. The results show that 0.1 mM CA treatment decreased photosynthetic rate (P(n)) and RuBPC activity, but it did not affect the maximal photochemical efficiency of PSII (F(v)/F(m)), the actual photochemical efficiency of PSII (PhiPSII), intercellular CO(2) concentration (C(i)), and relative chlorophyll content. These suggest that the decrease in P(n) is at least partially attributed to a lowered RuBPC activity. In addition, 0.1 mM CA treatment increased the putrescine (Put) level, but decreased spermidine (Spd) and spermine (Spm) levels, thereby reducing the (Spd+Spm)/Put (PAs) ratio in the leaves. The exogenous application of 1 mM Spd markedly reversed these CA-induced effects for polyamine and partially restored the PAs ratio and RuBPC activity in leaves. Methylglyoxal-bis (guanylhydrazone) (MGBG), which is an inhibitor of S-adenosylmethionine decarboxylase (SAMDC), results in the inability of activated cells to synthesize Spd and exacerbates the negative effects induced by CA. The exogenous application of 1 mM D-arginine (D-Arg), which is an inhibitor of Put biosynthesis, decreased the levels of Put, but increased the PAs ratio and RuBPC activity in leaves. These results suggest that 0.1 mM CA inhibits RuBPC activity by decreasing the levels of endogenous free and perchloric acid soluble (PS) conjugated Spm, as well as the PAs ratio.


Subject(s)
Cinnamates/pharmacology , Fabaceae/drug effects , Fabaceae/enzymology , Ribulose-Bisphosphate Carboxylase/antagonists & inhibitors , Spermine/metabolism , Arginine/pharmacology , Linear Models , Malondialdehyde/metabolism , Mitoguazone/pharmacology , Perchlorates/metabolism , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/enzymology , Plant Leaves/physiology , Ribulose-Bisphosphate Carboxylase/metabolism , Solubility/drug effects , Stress, Physiological/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...