Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 630(Pt A): 395-403, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36265341

ABSTRACT

Nanoscale zero-valent iron (nZVI)-based composites have been widely utilized in environmental cleanup due to their low cost, high adsorption performance and strong redox activity. Herein, removal mechanism of U(VI) on nZVI/clay composites was demonstrated by batch, XPS and modeling techniques. The batch experiments showed that nZVI/clay composites exhibited the high removal capacity (88.90 mg/g at pH 4.0) and good regeneration towards U(VI) from aqueous solution. The adsorbed U(VI) was mostly reduced to U(IV) by nZVI/clay composites according to XPS analysis. The removal process of U(VI) on nZVI/clay composites was satisfactorily fitted by surface complexation modeling using strong and weak sites, indicating the high chemisorption of U(VI) on nZVI/clay composites. However, the fitting results underestimated U(VI) adsorption at pH 7.0-9.0 due to the reduction of U(VI) into U(IV), whereas the overestimation of U(VI) at pH 4.0-6.0 could be attributed to fewer surface complexation reaction involved. These findings are crucial for the application of nZVI-based composites for the highly efficient removal of radionuclides in actual environmental remediation.


Subject(s)
Environmental Restoration and Remediation , Water Pollutants, Chemical , Iron/chemistry , Clay , Water Pollutants, Chemical/analysis , Adsorption , Chromium/analysis
2.
Environ Sci Pollut Res Int ; 29(48): 73282-73291, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35619014

ABSTRACT

CdS-based composites as the highly efficient photocatalyst have been extensively investigated in recent years due to the suitable band gap and high photocatalytic efficiency. In this study, the effect of various factors (pH, U(VI) concentration, contents, and types of photocatalyst) on photocatalytic reduction of U(VI) by MoS2/CdS composite was investigated. The optimized experimental conditions (e.g., pH 7.0, 20 mg/g U(VI), and 1.0 g/L photocatalyst) was obtained by batch techniques. Approximately 97.5% of U(VI) was photo-catalytically reduced into U(IV) by 2.5 wt% MoS2/CdS composite within 15 min. After 5 cycles, 2.5 wt% MoS2/CdS composite still exhibited the high removal efficiency of U(VI) under 50-min irradiation, indicating the good stability. The photo-reduction mechanism of U(VI) on MoS2/CdS composite was attributed to the O-2 radicals by quenching experiments, ESR, and XPS analysis. The findings indicate that CdS-based catalyst has a great potential for the photocatalytic reduction of uranyl in actual environmental remediation.


Subject(s)
Environmental Restoration and Remediation , Molybdenum , Catalysis , Molybdenum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...