Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Environ Sci (China) ; 144: 159-171, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38802228

ABSTRACT

Dissolved organic matter (DOM) is a heterogeneous pool of compounds and exhibits diverse adsorption characteristics with or without phosphorous (P) competition. The impacts of these factors on the burial and mobilization of organic carbon and P in aquatic ecosystems remain uncertain. In this study, an algae-derived DOM (ADOM) and a commercially available humic acid (HA) with distinct compositions were assessed for their adsorption behaviors onto iron (oxy)hydroxides (FeOx), both in the absence and presence of phosphate. ADOM contained less aromatics but more protein-like and highly unsaturated structures with oxygen compounds (HUSO) than HA. The adsorption capacity of FeOx was significantly greater for ADOM than for HA. Protein-like and HUSO compounds in ADOM and humic-like compounds and macromolecular aromatics in HA were preferentially adsorbed by FeOx. Moreover, ADOM demonstrated a stronger inhibitory effect on phosphate adsorption than HA. This observation suggests that the substantial release of autochthonous ADOM by algae could elevate internal P loading and pose challenges for the restoration of restore eutrophic lakes. The presence of phosphate suppressed the adsorption of protein-like compounds in ADOM onto FeOx, resulting in an increase in the relative abundance of protein-like compounds and a decrease in the relative abundance of humic-like compounds in post-adsorption ADOM. In contrast, phosphate exhibited no discernible impact on the compositional fractionation of HA. Collectively, our results show the source-composition characters of DOM influence the immobilization of both DOM and P in aquatic ecosystems through adsorption processes. The preferential adsorption of proteinaceous compounds within ADOM and aromatics within HA highlights the potential for the attachment with FeOx to diminish the original source-specific signatures of DOM, thereby contributing to the shared DOM characteristics observed across diverse aquatic environments.


Subject(s)
Carbon , Ferric Compounds , Humic Substances , Lakes , Phosphates , Phosphorus , Water Pollutants, Chemical , Adsorption , Phosphorus/chemistry , Lakes/chemistry , Phosphates/chemistry , Humic Substances/analysis , Water Pollutants, Chemical/chemistry , Carbon/chemistry , Ferric Compounds/chemistry , Models, Chemical
2.
Cell Commun Signal ; 21(1): 97, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37143160

ABSTRACT

BACKGROUND: Coagulation disorders are a significant cause of lung cancer mortality. Although mast cells are known to play a role in coagulation abnormalities, their specific role in this process has not yet been elucidated. METHOD: We detected mast cells in the tumor microenvironment using single-cell sequencing data and examined their correlation with thrombosis-related genes, neutrophil-related genes, neutrophil extracellular trap-related signature genes, and immune infiltration levels in lung cancer patients through bioinformatics analysis. Bone marrow mast cell uptake of exosomes isolated from the lung adenocarcinoma cell line A549, which were labeled using PKH67, was observed using confocal microscopy. Mast cell degranulation was detected by measuring the ß-hexosaminidase release rate. Additionally, cytokine array analysis was performed to identify altered mediators released by bone marrow mast cells after uptake of the exosomes. RESULTS: In our study, we found a close correlation between the proportion of mast cells in lung cancer patients and the expression levels of thrombosis-related genes and neutrophil extracellular trap signature genes, both of which play a key role in thrombophilic disorder. Moreover, we discovered that lung cancer cell-derived exosomes can be taken up by mast cells, which in turn become activated to release procoagulant mediators. CONCLUSION: Our study shows that exosomes derived from lung cancer cells can activate mast cells to release procoagulants that may contribute to abnormal blood clotting in lung cancer patients. Video Abstract.


Subject(s)
Blood Coagulation Disorders , Exosomes , Lung Neoplasms , Humans , Exosomes/metabolism , Mast Cells , Lung Neoplasms/pathology , Cytokines/metabolism , Blood Coagulation , Blood Coagulation Disorders/metabolism , Tumor Microenvironment
3.
J Thorac Dis ; 15(3): 1406-1425, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37065583

ABSTRACT

Background: An accumulating amount of studies are highlighting the impacts of cancer-associated fibroblasts (CAFs) on the initiation, metastasis, invasion, and immune evasion of lung cancer. However, it is still unclear how to tailor treatment regimens based on the transcriptomic characteristics of CAFs in the tumor microenvironment of patients with lung cancer. Methods: Our study examined single-cell RNA-sequencing data from the Gene Expression Omnibus (GEO) database to identify expression profiles for CAF marker genes and constructed a prognostic signature of lung adenocarcinoma using these genes in The Cancer Genome Atlas (TCGA) database. The signature was validated in 3 independent GEO cohorts. Univariate and multivariate analyses were used to confirm the clinical significance of the signature. Next, multiple differential gene enrichment analysis methods were used to explore the biological pathways related to the signature. Six algorithms were used to assess the relative proportion of infiltrating immune cells, and the relationship between the signature and immunotherapy response of lung adenocarcinoma (LUAD) was explored based on the tumor immune dysfunction and exclusion (TIDE) algorithm. Results: The signature related to CAFs in this study showed good accuracy and predictive capacity. In all clinical subgroups, the high-risk patients had a poor prognosis. The univariate and multivariate analyses confirmed that the signature was an independent prognostic marker. Moreover, the signature was closely associated with particular biological pathways related to cell cycle, DNA replication, carcinogenesis, and immune response. The 6 algorithms used to assess the relative proportion of infiltrating immune cells indicated that a lower infiltration of immune cells in the tumor microenvironment was associated with high-risk scores. Importantly, we found a negative correlation between TIDE, exclusion score, and risk score. Conclusions: Our study constructed a prognostic signature based on CAF marker genes useful for prognosis and immune infiltration estimation of lung adenocarcinoma. This tool could enhance therapy efficacy and allow individualized treatments.

4.
Environ Res ; 227: 115823, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37004851

ABSTRACT

Alpine lake habitats are evolving into subalpine lakes under the scenario of climate change, where the vegetation are promoted due to increasing temperature and precipitation. The abundant terrestrial dissolved organic matter (TDOM) leached from watershed soil into subalpine lakes would undergo strong photochemical reaction due to the high altitude, with the potential to alter DOM composition and affect the bacterial communities. To reveal the transformation of TDOM by both photochemical and microbial processes in a typical subalpine lake, Lake Tiancai (located 200 m below the tree line) was chosen. TDOM was extracted from the surrounding soil of Lake Tiancai and then subjected to the photo/micro-processing for 107 days. The transformation of TDOM was analyzed by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and fluorescence spectroscopy, and the shift of bacterial communities was analyzed using 16s rRNA gene sequencing technology. Dissolved organic carbon and light-absorbing components (a350) decay accounted for approximately 40% and 80% of the original, respectively, in the sunlight process, but both less than 20% in the microbial process for 107 days. The photochemical process promoted the chemodiversity as there were ∼7000 molecules after sunlight irradiation, compared to ∼3000 molecules in the original TDOM. Light promoted the production of highly unsaturated molecules and aliphatics, which were significantly associated with Bacteroidota, suggesting that light may influence bacterial communities by regulating the DOM molecules. Carboxylic-rich alicyclic molecules were generated in both photochemical and biological processes, suggesting TDOM was converted to a stable pool over time. Our finding on the transformation of terrestrial DOM and the alternation of bacterial community under the simultaneously photochemical and microbial processes will help to reveal the response of the carbon cycle and lake system structure to climate change for high-altitude lakes.


Subject(s)
Lakes , Sunlight , Lakes/chemistry , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Soil , Biodiversity
5.
Environ Sci Pollut Res Int ; 30(18): 52969-52981, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36843169

ABSTRACT

Algal-dissolved organic matter (ADOM) is an important fraction of dissolved organic carbon (DOC) in eutrophic water. Although ADOM is known to be readily transformed by microbes, the role of sunlight-induced photochemical process and the interactions between two processes on ADOM transformation remains unclear. In this study, three types of treatments for ADOM, including photochemical process under natural solar light (L treatment), microbial process (M treatment), and the simultaneous photochemical plus microbial process (L&M), were performed for 18 days. Our results showed that M treatment was more effective for the loss of DOC, chromophoric DOM (CDOM) at short wavelengths (a254 and a280), than L treatment, while L treatment was more effective for the transformation of a350 and the fluorescent components of the ubiquitous humic-like component and the tryptophan-like component. Comparison in the decay kinetics of DOC and CDOM in the three treatments showed that the simultaneous photochemical and biological processes exhibited an inhibitory effect on DOC decay rate but not the percentage of labile DOC fraction. Higher relative abundance of protein-like substances was found after L&M treatment, while the relative abundance of humic-like substance and aromaticity increased after M treatment, and the low molecular-weight compounds were produced after L treatment. Our results emphasized the importance of photochemistry in processing ADOM to mediate the chemodiversity in natural water.


Subject(s)
Dissolved Organic Matter , Sunlight , Water , Spectrometry, Fluorescence , Photochemical Processes , Humic Substances/analysis
6.
J Hazard Mater ; 449: 131016, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36821894

ABSTRACT

The stability of organic matter-iron-phosphate (OM-Fe-P) association has an important impact on the migration and sequestration of organic carbon (OC) and P in the environment. Here, we examined the release characteristics of Fe, P and OM due to the abiotic reduction of OM-Fe-P associations by Na-dithionite. The associations were synthesized with algae-derived OM (AOM) and terrestrial humic acid (HA) through either adsorption onto iron (hydr)oxide or coprecipitation with Fe(III). Results indicated that OM and P adsorbed onto the associations were rapidly released, whereas coprecipitation yielded much lower release rates of Fe, P, and OM. The stronger inhibitory effect on reduction from coprecipitation can be explained by larger particles formed by coprecipitation and coprecipitation taking up more OC that had a passivation effect on the associations. The release rates of OM and P were lower in coprecipitates formed with HA than formed with AOM for a given OC/Fe ratio. This observation can be attributed to a patchy distribution of OC in AOM associated coprecipitates, which showed a weaker aggregation of OC with Fe and P. In contrast, the distribution of OC in HA-associated coprecipitates was more homogenous, enabling a stronger aggregation of OM with P and a greater passivation effect on P release. Our results revealed that OM sources, association formation pathways, and elemental stoichiometry collectively controlled the stability of OM-Fe-P associations.

7.
ACS Appl Mater Interfaces ; 15(3): 4799-4813, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36635243

ABSTRACT

Energy-free radiative cooling is a green and ideal solution to replace air conditioning by reflecting sunlight spontaneously and radiating excess heat through atmospheric transparency windows to outer space for passive cooling. However, most radiative cooling materials are susceptible to contamination by dust, rain, etc., which reduces the cooling capacity in outdoor environments. Herein, we report on a superhydrophobic daytime radiative cooling coating based on SiO2-coated glass bubble (SiO2-GB) powder that achieves strong sunlight reflectivity (96%) and high mid-infrared emissivity (98%), effectively producing an ambient temperature drop of 11.1 °C in direct outdoor sunlight. More importantly, the coating has good superhydrophobic properties with a water contact angle of 157°, which allows the coating to be self-cleaning to keep the coating free from contamination and effectively maintain good radiation cooling performance. In addition, the prepared coatings remain hydrophobic and keep good radiative cooling properties when exposed to different pH solutions and long-term exposure to UV irradiation, which has important implications for sustainable applications, and our work holds great promise for the energy efficiency of building materials and their long-term outdoor service.

8.
Huan Jing Ke Xue ; 43(8): 4108-4117, 2022 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-35971708

ABSTRACT

Macrophyte- and algae-dominated lakes (zones) are the two typical states of shallow lakes, where the source and composition of organic matter are distinct. The burial of organic matter (OM) in the sediment supports the role of lakes as carbon sinks. However, organic matter in the sediments could be further processed, influencing the carbon cycle. The post-burial metabolism of the sedimentary OM relates closely to its composition. However, information on the differences in composition remains limited, especially the molecular composition of organic matter from sediments in the macrophyte-dominated and algae-dominated lakes. In this study, sediments were collected from the macrophyte-dominated and algae-dominated zones of Taihu Lake (East Taihu Lake and Meiliang Bay, respectively), and the active pool of sedimentary OM (water soluble organic matter, WSOM) was extracted and purified. The composition of the WSOM was characterized in detail via absorption spectroscopy, fluorescent spectroscopy, infrared spectroscopy, and Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). The optical index of E2:E3 showed that the molecular size of WSOM in the macrophyte-dominated zone (M-WSOM) was slightly larger than that in the algae-dominated zone (A-WSOM). Consistently, the intensity-weighted molecular weights were identified as 388.9 and 379.9, respectively, via FT-ICR MS analysis. M-WSOM was more humified than A-WSOM, as evidenced by the SUVA254 and HIX values. The FT-ICR MS results showed that the relative abundance of the condensed aromatic substance and the aromatics were 6.3% (intensity-weighted) and 7.7% for M-WSOM and 1.1% and 4.4% for A-WSOM, respectively. The excitation-emission matrix fluorescence-parallel factor analysis (EEM-PARAFAC) suggested that the protein-like component was more in A-WSOM than that in M-WSOM, and the FT-ICR MS results showed that the intensity-weighted relative abundances of peptides were 35.6% and 15.6% for A-WSOM and M-WSOM, respectively. The FT-ICR MS results further showed that the heteroatom-containing molecules were abundant in the sedimentary WSOM, i.e., 82.9% and 91.7% for M-WSOM and A-WSOM, respectively. The nitrogen-containing molecules dominated, contributing to 53.5% and 78.5% of M-WSOM and A-WSOM, respectively. There were 30.4% and 41.4% phosphorus-containing molecules in M-WSOM and A-WSOM, respectively. The phosphorus-containing molecules in M-WSOM were mainly aliphatics and highly unsaturated structures with low oxygen, whereas those in A-WSOM were mainly peptides. This study elucidated the detailed molecular composition of WSOM in the macrophyte-dominated and algae-dominated zones of Taihu Lake, which aids understanding of the carbon, nitrogen, and phosphorus biogeochemical cycles in lakes.


Subject(s)
Geologic Sediments , Lakes , China , Environmental Monitoring/methods , Geologic Sediments/chemistry , Lakes/chemistry , Nitrogen/analysis , Phosphorus/analysis , Spectrum Analysis , Water/analysis
9.
Front Bioeng Biotechnol ; 10: 939158, 2022.
Article in English | MEDLINE | ID: mdl-35814022

ABSTRACT

Based on the safety of prussian blue (PB) in biomedical application, we prepared manganese-based prussian blue (MnPB) nanocatalysts to achieve enhanced photothermal therapy and chemodynamic therapy. And we conducted a series of experiments to explore the therapeutic effects of MnPB nanoparticles (NPs) on non-small cell lung cancer (NSCLC) in vivo and in vitro. For in vitro experiments, the MnPB NPs suppressed growth of A549 cells by reactive oxygen species upregulation and near-infrared irradiation. Moreover, the MnPB NPs could inhibit lung cancer metastasis through downregulating the matrix metalloproteinase (MMP)-2 and MMP-9 expression in A549 cells. And for in vivo experiments, the MnPB NPs inhibited the growth of xenografted tumor effectively and were biologically safe. Meanwhile, Mn2+ as a T1-weighted agent could realize magnetic resonance imaging-guided diagnosis and treatment. To sum up, the results in this study clearly demonstrated that the MnPB NPs had remarkable effects for inhibiting the growth and metastasis of NSCLC and might serve as a promising multifunctional nanoplatform for NSCLC treatment.

10.
Front Chem ; 9: 789934, 2021.
Article in English | MEDLINE | ID: mdl-34820358

ABSTRACT

Non-small cell lung cancer (NSCLC) is considered to be a principal cause of cancer death across the world, and nanomedicine has provided promising alternatives for the treatment of NSCLC in recent years. Photothermal therapy (PTT) and chemodynamic therapy (CDT) have represented novel therapeutic modalities for cancer treatment with excellent performance. The purpose of this research was to evaluate the effects of PPy@Fe3O4 nanoparticles (NPs) on inhibiting growth and metastasis of NSCLC by combination of PTT and CDT. In this study, we synthesized PPy@Fe3O4 NPs through a very facile electrostatic absorption method. And we detected reactive oxygen species production, cell apoptosis, migration and protein expression in different groups of A549 cells and established xenograft models to evaluate the effects of PPy@Fe3O4 NPs for inhibiting the growth of NSCLC. The results showed that the PPy@Fe3O4 NPs had negligible cytotoxicity and could efficiently inhibit the cell growth and metastasis of NSCLC in vitro. In addition, the PPy@Fe3O4 NPs decreased tumor volume and growth in vivo and endowed their excellent MRI capability of observing the location and size of tumor. To sum up, our study displayed that the PPy@Fe3O4 NPs had significant synergistic effects of PTT and CDT, and had good biocompatibility and safety in vivo and in vitro. The PPy@Fe3O4 NPs may be an effective drug platform for the treatment of NSCLC.

11.
Eur J Pharmacol ; 499(1-2): 45-51, 2004 Sep 19.
Article in English | MEDLINE | ID: mdl-15363950

ABSTRACT

Antiarrhythmic drugs have been considered to be transported by the organic cation transport system. The purpose of this study was to elucidate the molecular mechanism underlying the transport of antiarrhythmic drugs using cells from the second segment of the proximal tubule (S2) cells of mice expressing human-organic cation transporter 3 (S2 human-OCT3). The antiarrhythmic drugs tested were cibenzoline, disopyramide, lidocaine, mexiletine, phenytoin, pilsicanide, procainamide and quinidine. Human-OCT3 mediated a time- and dose-dependent uptake of quinidine and lidocaine, with Km values of 216 and 139 microM, respectively. Human-OCT3 also mediated the uptake of disopyramide and procainamide but not that of phenytoin. All antiarrhythmic drugs tested inhibited histamine uptake mediated by human-OCT3 in a dose-dependent manner. The IC50 values of antiarrhythmic drugs for human-OCT3 ranged between 0.75 and 656 microM. Kinetic analysis revealed that disopyramide, lidocaine, procainamide and quinidine inhibited histamine uptake mediated by human-OCT3 in a competitive manner. In conclusion, these results suggest that human-OCT3 mediates the transport of antiarrhythmic drugs, which may be the mechanism underlying the distribution and the elimination of these drugs.


Subject(s)
Anti-Arrhythmia Agents/pharmacokinetics , Organic Cation Transport Proteins/metabolism , Animals , Anti-Arrhythmia Agents/pharmacology , Biological Transport/drug effects , Cell Line , Disopyramide/pharmacokinetics , Disopyramide/pharmacology , Dose-Response Relationship, Drug , Histamine/pharmacokinetics , Humans , Lidocaine/pharmacokinetics , Lidocaine/pharmacology , Mice , Organic Cation Transport Proteins/genetics , Phenytoin/pharmacokinetics , Phenytoin/pharmacology , Procainamide/pharmacokinetics , Procainamide/pharmacology , Quinidine/pharmacokinetics , Quinidine/pharmacology
12.
Drug Metab Dispos ; 32(10): 1096-102, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15377641

ABSTRACT

Zonampanel monohydrate (YM872; [2,3-dioxo-7-(1H-imidazol-1-yl)-6-nitro-1,2,3,4-tetrahydro-1-quinoxalinyl]acetic acid monohydrate) is a novel alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist. The major elimination route for zonampanel has been reported to be by urine via the kidneys. The purpose of this study is to elucidate the molecular mechanism of the renal excretion of zonampanel using cells stably expressing human organic anion transporters (hOAT) 1, hOAT2, hOAT3, and hOAT4, as well as human organic cation transporters (hOCT) 1 and hOCT2. Another AMPA receptor antagonist, YM90K [6-(1H-imidazol-1-yl)-7-nitro-2,3(1H,4H)-quinoxalinedione monohydrochloride], a decarboxymethylated form of zonampanel, was also used for comparing the substrate specificity. Zonampanel inhibited the uptake of prototypical organic anion substrates, [14C]para-aminohippurate in hOAT1 and [3H]estrone sulfate in hOAT3 and hOAT4, in a competitive manner. A time- and concentration-dependent increase in [14C]zonampanel uptake was observed in cells expressing hOAT1, hOAT3, and hOAT4. The Km values of zonampanel uptake by hOAT1, hOAT3, and hOAT4 were 1.4, 7.7, and 215 microM, respectively. Considering the localization of each transporter, results suggest that zonampanel is taken up via hOAT1 and hOAT3 from the blood into proximal tubular cells and then effluxed into the lumen via hOAT4. Probenecid and cimetidine competitively inhibited [14C]zonampanel uptake by the hOATs (hOAT1, hOAT3, and hOAT4 for probenecid; hOAT3 for cimetidine). YM90K inhibited the uptake of the prototypical substrate via hOAT3 competitively, but the uptake via hOAT1 noncompetitively. These findings suggest that the prototypical organic anion substrates (para-aminohippurate and estrone sulfate), cimetidine, probenecid, and zonampanel share binding specificity in each hOAT, whereas YM90K does not in hOAT1, possibly due to it being the decarboxymethylated form.


Subject(s)
Imidazoles/metabolism , Kidney Tubules/metabolism , Organic Anion Transporters/metabolism , Quinoxalines/metabolism , Receptors, AMPA/antagonists & inhibitors , Biological Transport/drug effects , Biological Transport/physiology , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/chemistry , Excitatory Amino Acid Antagonists/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Kidney Tubules/drug effects , Quinoxalines/chemistry , Quinoxalines/pharmacology , Receptors, AMPA/metabolism
13.
J Pharmacol Sci ; 94(2): 197-202, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14978359

ABSTRACT

We have elucidated the interactions of human and rat organic anion transporters (hOATs and rOATs) with pravastatin and cimetidine. Pravastatin inhibited hOAT1/rOAT1, hOAT2/rOAT2, hOAT3/rOAT3, and hOAT4. The mode of inhibition was noncompetitive for hOAT1 and hOAT2, whereas it was competitive for hOAT3 and hOAT4. Cimetidine also inhibited hOAT1/rOAT1, hOAT3/rOAT3, and hOAT4. The mode of inhibition was a combination of competitive and noncompetitive manners for hOAT1, whereas it was competitive for hOAT3. The effects of OAT inhibitors on OAT1, OAT2, and OAT3 exhibited some but not so remarkable interspecies differences between humans and rats. In conclusion, we have characterized pravastatin and cimetidine as OAT inhibitors.


Subject(s)
Cimetidine/pharmacokinetics , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/metabolism , Pravastatin/pharmacokinetics , Animals , Cimetidine/chemistry , Humans , Pravastatin/chemistry , Rats
14.
Eur J Pharmacol ; 483(2-3): 133-8, 2004 Jan 12.
Article in English | MEDLINE | ID: mdl-14729100

ABSTRACT

The purpose of this study was to elucidate the role of human organic anion transporters (human OATs) in the induction of drug-induced skeletal muscle abnormalities. 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors have been clinically used for lowering plasma cholesterol levels, and are known to induce various forms of skeletal muscle abnormalities including myopathy and rhabdomyolysis. Immunohistochemical analysis revealed that human OAT1 and human OAT3 are localized in the cytoplasmic membrane of the human skeletal muscles. The activities of human OATs were measured using mouse cell lines from renal proximal tubules stably expressing human OATs. Human OAT3, but not human OAT1, mediates the transport of pravastatin. Fluvastatin inhibited organic anion uptake mediated by human OAT1 in a mixture of competitive and noncompetitive manner, whereas simvastatin and fluvastatin noncompetitively inhibited the organic anion uptake mediated by human OAT3. In conclusion, the organic anion transporters OAT1 and OAT3 are localized in the cytoplasmic membrane of human skeletal muscles. Pravastatin, simvasatin, and fluvasatin inhibit human OATs activity. These results suggest that muscle organic anion transporters play a role in the muscular side effects of HMG-CoA reductase inhibitors.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Muscle, Skeletal/drug effects , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/physiology , Adult , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Male , Mice , Muscle, Skeletal/physiology
15.
J Pharmacol Exp Ther ; 308(3): 1021-9, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14610216

ABSTRACT

The tubular secretion of diuretics in the proximal tubule has been shown to be critical for the action of drugs. To elucidate the molecular mechanisms for the tubular excretion of diuretics, we have elucidated the interactions of human organic anion transporters (hOATs) with diuretics using cells stably expressing hOATs. Diuretics tested were thiazides, including chlorothiazide, cyclothiazide, hydrochlorothiazide, and trichlormethiazide; loop diuretics, including bumetanide, ethacrynic acid, and furosemide; and carbonic anhydrase inhibitors, including acetazolamide and methazolamide. These diuretics inhibited organic anion uptake mediated by hOAT1, hOAT2, hOAT3, and hOAT4 in a competitive manner. hOAT1 exhibited the highest affinity interactions for thiazides, whereas hOAT3 did those for loop diuretics. hOAT1, hOAT3, and hOAT4 but not hOAT2, mediated the uptake of bumetanide. hOAT3 and hOAT4, but not hOAT1 mediated the efflux of bumetanide. hOAT1 and hOAT3, but not hOAT2 and hOAT4 mediated the uptake of furosemide. In conclusion, it was suggested that hOAT1 may play an important role in the basolateral uptake of thiazides, and hOAT3 in the uptake of loop diuretics. In addition, it was also suggested that bumetanide taken up by hOAT3 and/or hOAT1 is excreted into the urine by hOAT4.


Subject(s)
Bumetanide/pharmacokinetics , Diuretics/pharmacokinetics , Organic Anion Transporters/metabolism , Animals , Biological Transport , Cells, Cultured , Chromatography, High Pressure Liquid , Furosemide/analysis , Humans , Mice , Mice, Transgenic , Organic Anion Transporters/drug effects , Organic Anion Transporters/genetics , Transfection
16.
Leg Med (Tokyo) ; 5(2): 87-92, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12935536

ABSTRACT

The present study analyses the human Y-chromosome minisatellite locus, MSY1 (DYF155S1), in 205 Japanese males of 191 pedigrees using the minisatellite variant repeat (MVR) mapping system. The internal haploid structures of the detected alleles considerably varied and consisted of three major repeat units: types 2, 3 and 4. A comparison of the haploid profiles of the MVR codes identified 185 distinct alleles, of which only five were shared. We did not detect a type 1 repeat unit, and variations were frequent at the 5' end of the minisatellite locus. Within an analysis of 24 paternally linked DNA samples donated by ten families, no mutational events were identified even over two generation gaps. Furthermore, we applied this mapping system to a paternity test in which the alleged father was missing.


Subject(s)
Chromosomes, Human, Y/genetics , Minisatellite Repeats , Alleles , Haploidy , Humans , Japan , Male , Mutation , Paternity
17.
Eur J Pharmacol ; 465(1-2): 1-7, 2003 Mar 28.
Article in English | MEDLINE | ID: mdl-12650826

ABSTRACT

Cephalosporin antibiotics are thought to be excreted into the urine via organic anion transporters (OATs) and OAT can mediate nephrotoxicity by cephalosporins, particularly by cephaloridine. The purpose of this study was to elucidate the interaction of human-OAT2 and rat-OAT2 with cephalosporin antibiotics using proximal tubule cells stably expressing human-OAT2 and rat-OAT2. Human-OAT2 is localized to the basolateral side of the proximal tubule, whereas rat-OAT2 is localized to the apical side of the proximal tubule. Cephalosporins tested were cephalothin, cefoperazone, cefazolin, ceftriaxone, cephaloridine, cefotaxime, cefadroxil and cefamandole. These cephalosporins dose-dependently inhibited organic anion uptake mediated by human-OAT2 and rat-OAT2. There was no species difference observed for the effects of OAT2 with cephalosporins between human and rat transporters. Kinetic analysis revealed that the inhibitory effects for human-OAT2 were competitive. Cephaloridine significantly decreased the viability of cells stably expressing human-OAT2, human-OAT1, human-OAT3 and human-OAT4. The decreased viability of cells stably expressing human-OAT1, human-OAT3 and human-OAT4 but not human-OAT2 was reversed by probenecid. In conclusion, human-OAT2 interacts with cephalosporins, and thus, human-OAT2 may mediate the uptake of cephalosporins on the basolateral side of the proximal tubule. The interaction of human-OAT2 with cephalosporins was the weakest among the basolateral human-OATs tested. In addition, it is suggested that human-OATs mediate cephaloridine-induced nephrotoxicity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Organic Anion Transporters, Sodium-Independent/metabolism , Animals , Biological Transport/drug effects , Cefadroxil/pharmacology , Cefamandole/pharmacology , Cefazolin/pharmacology , Cefoperazone/pharmacology , Cefotaxime/pharmacology , Ceftriaxone/pharmacology , Cell Line , Cell Survival/drug effects , Cephaloridine/pharmacology , Cephalothin/pharmacology , Dinoprost/pharmacokinetics , Dose-Response Relationship, Drug , Humans , Kinetics , Mice , Mice, Transgenic , Organic Anion Transporters, Sodium-Independent/genetics , Probenecid/pharmacology , Rats , Transfection , Uricosuric Agents/pharmacology
18.
J Pharmacol Sci ; 93(4): 430-6, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14737013

ABSTRACT

The purpose of the present study was to elucidate the expression of human organic anion transporter 1 (hOAT1) and hOAT3 in the choroid plexus of the human brain and their interactions with neurotransmitter metabolites using stable cell lines. Immunohistochemical analysis revealed that hOAT1 and hOAT3 are expressed in the cytoplasmic membrane and cytoplasm of human choroid plexus. Neurotransmitter metabolites, namely, 5-methoxyindole-3-acetic acid (5-MI-3-AA), homovanillic acid (HVA), vanilmandelic acid (VMA), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindole-3-acetic acid (5-HI-3-AA), N-acetyl-5-hydroxytryptamine (NA-5-HTT), melatonin, 5-methoxytryptamine (5-MTT), 3,4-dihidroxymandelic acid (DHMA), 5-hydroxytryptophol, and 5-methoxytryptophol (5-MTP), but not methanephrine (MN), normethanephrine (NMN), and 3-methyltyramine (3-MT), at 2 mM, inhibited para-aminohippuric acid uptake mediated by hOAT1. On the other hand, melatonin, 5-MI-3-AA, NA-5-HTT, 5-MTT, 5-MTP, HVA, 5-HI-3-AA, VMA, DOPAC, 5-hydroxytryptophol, and MN, but not 3-MT, DHMA, and NMN, at 2 mM, inhibited estrone sulfate uptake mediated by hOAT3. Differences in the IC(50) values between hOAT1 and hOAT3 were observed for DHMA, DOPAC, HVA, 5-HI-3-AA, melatonin, 5-MI-3-AA, 5-MTP, 5-MTT, and VMA. HOAT1 and hOAT3 mediated the transport of VMA but not HVA and melatonin. These results suggest that hOAT1 and hOAT3 are involved in the efflux of various neurotransmitter metabolites from the cerebrospinal fluid to the blood across the choroid plexus.


Subject(s)
Choroid Plexus/metabolism , Neurotransmitter Agents/metabolism , Organic Anion Transport Protein 1/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Cell Line , Homovanillic Acid/metabolism , Humans , Melatonin/metabolism , Organic Anion Transport Protein 1/genetics , Organic Anion Transport Protein 1/physiology , Organic Anion Transporters, Sodium-Independent/genetics , Organic Anion Transporters, Sodium-Independent/physiology , Vanilmandelic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...