Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.101
Filter
1.
Front Med (Lausanne) ; 11: 1390049, 2024.
Article in English | MEDLINE | ID: mdl-38841575

ABSTRACT

Background: Liver fibrosis significantly impacts public health globally. Untreated liver fibrosis eventually results in cirrhosis. Cigarette smoking is the main etiologic factor for various diseases. However, the causal effects of cigarette smoking on liver fibrosis and cirrhosis have yet to be fully elucidated. Methods: In this study, Mendelian randomization (MR) analysis was performed to assess the association between cigarette smoking, liver fibrosis, and cirrhosis. Single-nucleotide polymorphisms (SNPs) were selected as instrumental variables from a genome-wide association study (GWAS) of European ancestry. Patients were divided into six exposure categories as follows: "ever smoked," "pack years of smoking," "age of smoking initiation," "smoking status: never," "smoking status: current," and "smoking status: previous." The outcomes of this study included liver fibrosis and cirrhosis. MR-Egger, weighted median, inverse variance weighted, simple mode, and weighted mode were selected as the analysis methods. Cochran's Q and the MR-PRESSO tests were conducted to measure heterogeneity. The MR-Egger method was performed to evaluate horizontal pleiotropy, while the "leave-one-out" analysis was performed for sensitivity testing. Results: The results of this study showed that having a smoking history increases the risk of liver fibrosis and cirrhosis ["ever smoked": odds ratio (OR) = 5.704, 95% CI: 1.166-27.910, p = 0.032; "smoking status: previous": OR = 99.783, 95% CI: 2.969-3.353e+03, p = 0.010]. A negative correlation was observed between patients who never smoked and liver fibrosis and cirrhosis ("smoking status: never": OR = 0.171, 95% CI: 0.041-0.719, p = 0.016). However, there were no significant associations between "smoking status: current," "pack years of smoking," and "age of smoking initiation" and liver fibrosis and cirrhosis. Cigarette smoking did not have a significant horizontal pleiotropic effect on liver fibrosis and cirrhosis. The "Leave-one-out" sensitivity analysis indicated that the results were stable. Conclusion: The study confirmed the causal effects of cigarette smoking on liver fibrosis and cirrhosis.

2.
Nutr Hosp ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38726608

ABSTRACT

The effectiveness of an elemental diet (ED) for preventing adverse events (AEs) during chemotherapy for patients with esophageal cancer (EC) remains unclear. The aim of this meta-analysis was to comprehensively assess the efficacy of ED for preventing AE in EC patients during chemotherapy. Medline (via PubMed), Embase, the Cochrane Library, and Web of Science were searched to retrieve prospective and randomized studies published before April 12, 2023. The odds ratio (OR) of each AE was calculated using Review Manger 5.4.1. The risk of bias was assessed, and a random effect model-based meta-analysis was used to analyze the available data. Four prospective and randomized studies involving 237 patients were identified after a systematic search. Regarding gastrointestinal toxicities, the findings indicated a trend toward a decrease in the risk of mucositis (OM) (OR = 0.54, 95 % CI: 0.25-1.14), constipation (OR = 0.87, 95 % CI: 0.49-1.53), and anorexia (OR = 0.99, 95 % CI: 0.32-3.05), as well as an increasing trend in the risk of diarrhea (OR = 1.48, 95 % CI: 0.79-2.79), among patients treated with ED. However, none of these reached statistical significance. For hematological toxicities, the risk of all-grade neutropenia (OR = 0.28, 95 % CI: 0.14-0.57), grade ≥ 2 leucopenia (OR = 0.43, 95 % CI: 0.22-0.84), grade ≥ 2 neutropenia (OR = 0.34, 95 % CI: 0.17-0.67), and grade ≥ 3 neutropenia (OR = 0.28, 95 % CI: 0.12-0.63) was significantly decreased. There is no firm evidence confirming the preventive effect of an ED against OM or diarrhea. However, an ED may potentially be helpful in preventing neutropenia and leucopenia.

3.
Opt Lett ; 49(9): 2245-2248, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691690

ABSTRACT

Narrowband green-emission, combined with superior physicochemical stability and thermal performance, is regarded as a common pursuit in backlight display applications. However, mainstream phosphor-converted materials composed of resin or silicone resin easily encounter the dilemma of thermal decomposition and chemical corrosion for practical use. To overcome this problem, in this work, Mn2+/Mg2+ co-doped AlON ceramic is successfully realized with ultra-narrowband green-emission and high transparency. The luminescent property of AlON: Mn2+-Mg2+ ceramic exhibits narrowband green emission centered at 509 nm with a full width at half maximum of 36 nm, which is smaller than the corresponding powder counterpart (44 nm). Moreover, AlON: Mn2+-Mg2+ ceramic presents a wide color gamut (103.6%) and high color purity (74%). Concurrently, high transmittance of this ceramic, at 82%, unveils a potential innovation in the display technology field. This work may facilitate the development of narrowband green light-emitting converters based on AlON: Mn2+-Mg2+ transparent ceramics in large color gamut backlight display applications.

4.
Sci Rep ; 14(1): 10037, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693217

ABSTRACT

In order to safeguard the surface structures from mining damage while optimizing the liberation of coal resources under the dense surface buildings of the Cedi River coal mine. Considering that the analysis of the structure and type of surface buildings and the geological mining conditions of the mine, a wide strip mining design with a retention width of 70 m and a mining width of 50 m was finally determined by using the pressure arch theory and Wilson's theory, combined with the actual layout of working faces 51,002, 51,004 and 51,006 at the site.The strip mining design is verified by probability integral method and FLAC3D numerical simulation calculation respectively, The findings indicate that the highest value of earth surface subsidence created by the mining of the wide strip is 210 mm, the surface horizontal deformation value is 1.0 to - 1.4 mm/m, the damage to surface buildings is less than Level I, which satisfying the prerequisites of the surface building protection level, and can realize the continuous advancement of mine 51,002, 51,004 and 51,006 working faces, The coal pillars of the retained strip have sufficient support strength and long-term consistency, and the movement and deformation of the overburden after mining will not cause undulating subsidence of the surface, which effectively solve the mine's technical difficulties in safely coal mining under surface buildings.

5.
ACS Biomater Sci Eng ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38815129

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive subtype with the worst prognosis and highest recurrence rates. The treatment choices are limited due to the scarcity of endocrine and HER2 targets, except for chemotherapy. However, the side effects of chemotherapy restrict its long-term usage. Immunotherapy shows potential as a promising therapeutic strategy, such as inducing immunogenic cell death, immune checkpoint therapy, and immune adjuvant therapy. Nanotechnology offers unique advantages in the field of immunotherapy, such as improved delivery and targeted release of immunotherapeutic agents and enhanced bioavailability of immunomodulators. As well as the potential for combination therapy synergistically enhanced by nanocarriers. Nanoparticles-based combined application of multiple immunotherapies is designed to take the tactics of enhancing immunogenicity and reversing immunosuppression. Moreover, the increasing abundance of biomedical materials holds more promise for the development of this field. This review summarizes the advances in the field of nanoparticle-mediated immunotherapy in terms of both immune strategies for treatment and the development of biomaterials and presents challenges and hopes for the future.

6.
Cardiol Rev ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814094

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) poses a significant clinical challenge, with sudden cardiac death (SCD) emerging as one of the leading causes of mortality. Despite advancements in cardiovascular medicine, predicting and preventing SCD in HFpEF remains complex due to multifactorial pathophysiological mechanisms and patient heterogeneity. Unlike heart failure with reduced ejection fraction, where impaired contractility and ventricular remodeling predominate, HFpEF pathophysiology involves heavy burden of comorbidities such as hypertension, obesity, and diabetes. Diverse mechanisms, including diastolic dysfunction, microvascular abnormalities, and inflammation, also contribute to distinct disease and SCD risk profiles. Various parameters such as clinical factors and electrocardiogram features have been proposed in SCD risk assessment. Advanced imaging modalities and biomarkers offer promise in risk prediction, yet comprehensive risk stratification models specific to HFpEF ar0e lacking. This review offers recent evidence on SCD risk factors and discusses current therapeutic strategies aimed at reducing SCD risk in HFpEF.

7.
Braz J Med Biol Res ; 57: e13368, 2024.
Article in English | MEDLINE | ID: mdl-38775547

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, with approximately 600,000 new cases each year. A small number of HNSCCs are caused by human papillomavirus (HPV) infection. Frizzled related protein (FRZB) has been reported in many inflammatory diseases and cancers, but it is yet unclear how FRZB affects HNSCC, as well as its role and underlying mechanism. TIMER2 database was utilized to evaluate FRZB expression in cancer tissues, and FRZB expression in HNSCC tissues was confirmed by samples obtained from Gene Expression Omnibus. To identify whether FRZB could be used as a prognostic predictor, we performed univariate and multivariate Cox regression analyses. FRZB co-expression profile was explored using the LinkedOmics database, then Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses were performed for these FRZB-related genes in HNSCC samples. Lasso regression analysis was subsequently used to screen for prognostic variables, and we determined the infiltration of immune cells in HNSCC patients to clarify the influence of FRZB on tumor immune microenvironment. At last, we assessed the association between FRZB expression and immune checkpoint gene, and compared the sensitivity of common chemotherapeutic agents. In this study, we found that FRZB was dysregulated in HNSCC tumor tissues and had a relationship with clinical parameters. The reliability and independence of FRZB as a factor in determining a patient's prognosis for HNSCC was also established. Additional investigation revealed that FRZB was linked to common immune checkpoint genes and may be implicated in immune infiltration.


Subject(s)
Biomarkers, Tumor , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Prognosis , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/virology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Head and Neck Neoplasms/genetics , Male , Female , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Middle Aged
8.
Planta ; 259(6): 148, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717679

ABSTRACT

MAIN CONCLUSION: Mutation of OsSHR2 adversely impacted root and shoot growth and impaired plant response to N conditions, further reducing the yield per plant. Nitrogen (N) is a crucial factor that regulates the plant architecture. There is still a lack of research on it. In our study, it was observed that the knockout of the SHORTROOT 2 (OsSHR2) which was induced by N deficiency, can significantly affect the regulation of plant architecture response to N in rice. Under N deficiency, the mutation of OsSHR2 significantly reduced root growth, and impaired the sensitivity of the root meristem length to N deficiency. The mutants were found to have approximately a 15% reduction in plant height compared to wild type. But mutants showed a significant increase in tillering at post-heading stage, approximately 26% more than the wild type, particularly in high N conditions. In addition, due to reduced seed setting rate and 1000-grain weight, mutant yield was significantly decreased by approximately 33% under low N fertilizer supply. The mutation also changed the distribution of N between the vegetative and reproductive organs. Our findings suggest that the transcription factor OsSHR2 plays a regulatory role in the response of plant architecture and yield per plant to N in rice.


Subject(s)
Gene Expression Regulation, Plant , Nitrogen , Oryza , Transcription Factors , Gene Expression Regulation, Plant/drug effects , Meristem/genetics , Meristem/growth & development , Meristem/drug effects , Mutation , Nitrogen/metabolism , Nitrogen/pharmacology , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Oryza/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Eur J Pharmacol ; 976: 176698, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821168

ABSTRACT

Myocardial infarction (MI) is a life-threatening cardiovascular disease that, on average, results in 8.5 million deaths worldwide each year. Timely revascularization of occluded vessels is a critical method of myocardial salvage. However, reperfusion paradoxically leads to the worsening of myocardial damage known as myocardial ischaemia/reperfusion injury (MI/RI). Therefore, reducing the size of myocardial infarction after reperfusion is critical and remains an important therapeutic goal. The susceptibility of the myocardium to MI/RI may be increased by diabetes. Currently, some traditional antidiabetic agents such as metformin reduce MI/RI by decreasing inflammation, inhibiting oxidative stress, and improving vascular endothelial function. This appears to be a new direction for the treatment of MI/RI. Recent cardiovascular outcome trials have shown that several oral antidiabetic agents, including glucagon-like peptide-1 receptor agonists (GLP-1RAs), dipeptidyl peptidase-4 inhibitors (DPP-4is), and sodium-glucose-linked transporter-2 inhibitors (SGLT-2is), not only have good antidiabetic effects but also have a protective effect on myocardial protection. This article aims to discuss the mechanisms and effects of oral antidiabetic agents, including GLP-1RAs, DPP-4is, and SGLT-2is, on MI/RI to facilitate their clinical application.

10.
J Clin Invest ; 134(9)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38690728

ABSTRACT

Hypothermia is commonly used to protect donor hearts during transplantation. However, patients transplanted with aged donor hearts still have severe myocardial injury and decreased survival rates, but the underlying mechanism remains unknown. Because aged hearts are not considered suitable for donation, the number of patients awaiting heart transplants is increasing. In this study, we examined whether hypothermic cardioprotection was attenuated in aged donor hearts during transplantation and evaluated potential therapeutic targets. Using a rat heart transplantation model, we found that hypothermic cardioprotection was impaired in aged donor hearts but preserved in young donor hearts. RNA-Seq showed that cold-inducible RNA-binding protein (Cirbp) expression was decreased in aged donor hearts, and these hearts showed severe ferroptosis after transplantation. The young donor hearts from Cirbp-KO rats exhibited attenuated hypothermic cardioprotection, but Cirbp overexpression in aged donor hearts ameliorated hypothermic cardioprotection. Cardiac proteomes revealed that dihydroorotate dehydrogenase (DHODH) expression was significantly decreased in Cirbp-KO donor hearts during transplantation. Consequently, DHODH-mediated ubiquinone reduction was compromised, thereby exacerbating cardiac lipid peroxidation and triggering ferroptosis after transplantation. A cardioplegic solution supplemented with CIRBP agonists improved hypothermic cardioprotection in aged donor hearts, indicating that this method has the potential to broaden the indications for using aged donor hearts in transplantation.


Subject(s)
Ferroptosis , Heart Transplantation , Animals , Rats , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Male , Tissue Donors , Hypothermia, Induced , Aging/metabolism , Aging/genetics
12.
Eur Heart J ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607560

ABSTRACT

BACKGROUND AND AIMS: Patients with acute myeloid leukaemia (AML) suffer from severe myocardial injury during daunorubicin (DNR)-based chemotherapy and are at high risk of cardiac mortality. The crosstalk between tumour cells and cardiomyocytes might play an important role in chemotherapy-related cardiotoxicity, but this has yet to be demonstrated. This study aimed to identify its underlying mechanism and explore potential therapeutic targets. METHODS: Cardiac tissues were harvested from an AML patient after DNR-based chemotherapy and were subjected to single-nucleus RNA sequencing. Cardiac metabolism and function were evaluated in AML mice after DNR treatment by using positron emission tomography, magnetic resonance imaging, and stable-isotope tracing metabolomics. Plasma cytokines were screened in AML mice after DNR treatment. Genetically modified mice and cell lines were used to validate the central role of the identified cytokine and explore its downstream effectors. RESULTS: In the AML patient, disruption of cardiac metabolic homeostasis was associated with heart dysfunction after DNR-based chemotherapy. In AML mice, cardiac fatty acid utilization was attenuated, resulting in cardiac dysfunction after DNR treatment, but these phenotypes were not observed in similarly treated tumour-free mice. Furthermore, tumour cell-derived interleukin (IL)-1α was identified as a primary factor leading to DNR-induced cardiac dysfunction and administration of an anti-IL-1α neutralizing antibody could improve cardiac functions in AML mice after DNR treatment. CONCLUSIONS: This study revealed that crosstalk between tumour cells and cardiomyocytes during chemotherapy could disturb cardiac energy metabolism and impair heart function. IL-1α neutralizing antibody treatment is a promising strategy for alleviating chemotherapy-induced cardiotoxicity in AML patients.

13.
Oncogene ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664501

ABSTRACT

Receptor-interacting protein kinase 4 (RIPK4) is increasingly recognized as a pivotal player in ovarian cancer, promoting tumorigenesis and disease progression. Despite its significance, the posttranslational modifications dictating RIPK4 stability in ovarian cancer remain largely uncharted. In this study, we first established that RIPK4 levels are markedly higher in metastatic than in primary ovarian cancer tissues through single-cell sequencing. Subsequently, we identified UCHL3 as a key deubiquitinase that regulates RIPK4. We elucidate the mechanism that UCHL3 interacts with and deubiquitinates RIPK4 at the K469 site, removing the K48-linked ubiquitin chain and thus enhancing RIPK4 stabilization. Intriguingly, inhibition of UCHL3 activity using TCID leads to increased RIPK4 ubiquitination and degradation. Furthermore, we discovered that GSK3ß-mediated phosphorylation of RIPK4 at Ser420 enhances its interaction with UCHL3, facilitating further deubiquitination and stabilization. Functionally, RIPK4 was found to drive the proliferation and metastasis of ovarian cancer in a UCHL3-dependent manner both in vitro and in vivo. Importantly, positive correlations between RIPK4 and UCHL3 protein expression levels were observed, with both serving as indicators of poor prognosis in ovarian cancer patients. Overall, this study uncovers a novel pathway wherein GSK3ß-induced phosphorylation of RIPK4 strengthens its interaction with UCHL3, leading to increased deubiquitination and stabilization of RIPK4, thereby promoting ovarian cancer metastasis. These findings offer new insights into the molecular underpinnings of ovarian cancer and highlight potential therapeutic targets for enhancing antitumor efficacy.

14.
Nat Commun ; 15(1): 3164, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605026

ABSTRACT

Two-dimensional organic-inorganic hybrid halide perovskites possess diverse structural polymorphs with versatile physical properties, which can be controlled by order-disorder transition of the spacer cation, making them attractive for constructing semiconductor homojunctions. Here, we demonstrate a space-cation-dopant-induced phase stabilization approach to creating a lateral homojunction composed of ordered and disordered phases within a two-dimensional perovskite. By doping a small quantity of pentylammonium into (butylammonium)2PbI4 or vice versa, we effectively suppress the ordering transition of the spacer cation and the associated out-of-plane octahedral tilting in the inorganic framework, resulting in phase pining of the disordered phase when decreasing temperature or increasing pressure. This enables epitaxial growth of a two-dimensional perovskite homojunction with tunable optical properties under temperature and pressure stimuli, as well as directional exciton diffusion across the interface. Our results demonstrate a previously unexplored strategy for constructing two-dimensional perovskite heterostructures by thermodynamic tuning and spacer cation doping.

15.
Anal Methods ; 16(16): 2569-2584, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38606427

ABSTRACT

The affinity sites of cadmium (Cd(II)) when binding to cysteine (Cys) and glutathione (GSH) were studied via thermodynamics and nuclear magnetic resonance (NMR) spectroscopy methods. The results showed that the Cd(II) binding sites of Cys and GSH were -SH (exothermic), -NH2 (endothermic) and -COOH (endothermic). The thermodynamic behaviour of Cd(II) binding to Cys/GSH in boric acid and HEPES buffers differed, with the former being mainly endothermic and the latter mainly exothermic. It could be inferred that, in the boric acid system, the main binding site of Cd(II) with Cys and GSH is changed from -SH in HEPES to -COOH and -NH2 in boric acid. This was confirmed by the results of NMR experiments of Cd(II) with Cys/GSH. 1D 1H-NMR experiments showed that, after the combination of Cd(II) and Cys, the changes in the chemical shifts and peak strengths of protons near the -SH group for the reaction in HEPES were greater than when boric acid buffer was used. Changes in the chemical shift and peak strength of the -NH2 protons due to the binding of Cd(II) to GSH were evident in the boric acid buffer but not in HEPES. The screening of functional monomers is very important in the process of preparation of cadmium ion-imprinted materials. This research provides important theoretical and experimental guidance for the screening of functional monomers.

16.
Plant Physiol ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637315

ABSTRACT

Seed deterioration during storage is a major problem in agricultural and forestry production and for germplasm conservation. Our previous studies have shown that a mitochondrial outer membrane protein VOLTAGE-DEPENDENT ANION CHANNEL (VDAC) is involved in programmed cell death (PCD)-like viability loss during the controlled deterioration treatment (CDT) of elm (Ulmus pumila L.) seeds, but its underlying mechanism remains unclear. In this study, we demonstrate that the oxidative modification of GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GAPDH) is functioned in the gate regulation of VDAC during the CDT of elm seeds. Through biochemical and cytological methods and observations of transgenic material [Arabidopsis (Arabidopsis thaliana), Nicotiana benthamiana, and yeast (Saccharomyces cerevisiae)], we demonstrate that cysteine S-glutathionylated UpGAPDH1 interacts with UpVDAC3 during seed aging, which leads to a mitochondrial permeability transition and aggravation of cell death, as indicated by the leakage of the mitochondrial pro-apoptotic factor cytochrome c and the emergence of apoptotic nucleus. Physiological assays and inductively coupled plasma mass spectrometry (ICP-MS) analysis revealed that GAPDH glutathionylation is mediated by increased glutathione, which might be caused by increases in the concentrations of free metals, especially Zn. Introduction of the Zn-specific chelator TPEN [(N, N, N', N'-Tetrakis (2-pyridylmethyl)ethylenediamine)] significantly delayed seed aging. We conclude that glutathionylated UpGAPDH1 interacts with UpVDAC3 and serves as a pro-apoptotic protein for VDAC-gating regulation and cell death initiation during seed aging.

17.
Nat Commun ; 15(1): 2883, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570487

ABSTRACT

Deuterium/Tritium (D/T) handling in defined proportions are pivotal to maintain steady-state operation for fusion reactors. However, the hydrogen isotope effect in metal-hydrogen systems always disturbs precise D/T ratio control. Here, we reveal the dominance of kinetic isotope effect during desorption. To reconcile the thermodynamic stability and isotope effect, we demonstrate a quantitative indicator of Tgap and further a local coordination design strategy that comprises thermodynamic destabilization with vibration enhancement of interstitial isotopes for isotope engineering. Based on theoretical screening analysis, an optimized Ti-Pd co-doped Zr0.8Ti0.2Co0.8Pd0.2 alloy is designed and prepared. Compared to ZrCo alloy, the optimal alloy enables consistent isotope delivery together with a three-fold lower Tgap, a five-fold lower energy barrier difference, a one-third lower isotopic composition deviation during desorption and an over two-fold higher cycling capacity. This work provides insights into the interaction between alloy and hydrogen isotopes, thus opening up feasible approaches to support high-performance fusion reactors.

18.
World J Gastroenterol ; 30(9): 1143-1153, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38577185

ABSTRACT

BACKGROUND: Endoscopic full-thickness resection (EFTR) of gastric submucosal tumors (SMTs) is safe and effective; however, postoperative wound management is equally important. Literature on suturing following EFTR for large (≥ 3 cm) SMTs is scarce and limited. AIM: To evaluate the efficacy and clinical value of double-nylon purse-string suture in closing postoperative wounds following EFTR of large (≥ 3 cm) SMTs. METHODS: We retrospectively analyzed the data of 85 patients with gastric SMTs in the fundus of the stomach or in the lesser curvature of the gastric body whose wounds were treated with double-nylon purse-string sutures after successful tumor resection at the Endoscopy Center of Renmin Hospital of Wuhan University. The operative, postoperative, and follow-up conditions of the patients were evaluated. RESULTS: All tumors were completely resected using EFTR. 36 (42.35%) patients had tumors located in the fundus of the stomach, and 49 (57.65%) had tumors located in the body of the stomach. All patients underwent suturing with double-nylon sutures after EFTR without laparoscopic assistance or further surgical treatment. Postoperative fever and stomach pain were reported in 13 (15.29%) and 14 (16.47%) patients, respectively. No serious adverse events occurred during the intraoperative or postoperative periods. A postoperative review of all patients revealed no residual or recurrent lesions. CONCLUSION: Double-nylon purse-string sutures can be used to successfully close wounds that cannot be completely closed with a single nylon suture, especially for large (≥ 3 cm) EFTR wounds in SMTs.


Subject(s)
Endoscopic Mucosal Resection , Stomach Neoplasms , Humans , Nylons , Gastroscopy/adverse effects , Retrospective Studies , Stomach Neoplasms/pathology , Sutures , Treatment Outcome
19.
Food Chem ; 449: 139197, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38581788

ABSTRACT

Abalone (Haliotis spp.) is a shellfish known for its exceptional nutritional value and significant economic worth. This study investigated the dynamic characteristics of non-volatile compounds over a year, including metabolites, lipids, nucleotides, and free amino acids (FAAs), which determined the nutritional quality and flavor of abalone. 174 metabolites and 371 lipids were identified and characterized, while 20 FAAs and 11 nucleotides were quantitatively assessed. These non-volatile compounds of abalone were fluctuated with months variation, which was consistent with the fluctuations of environmental factors, especially seawater temperature. Compared with seasonal variation, gender had less influence on these non-volatiles. June and July proved to be the optimal harvesting periods for abalone, with the levels of overall metabolites, lipids, FAAs, and nucleotides in abalone exhibiting a higher value in June and July over a year. Intriguingly, taurine covered 60% of the total FAAs and abalone could be used as dietary taurine supplementation.


Subject(s)
Amino Acids , Gastropoda , Metabolomics , Seasons , Shellfish , Animals , Gastropoda/chemistry , Gastropoda/metabolism , Shellfish/analysis , Amino Acids/metabolism , Amino Acids/analysis , Amino Acids/chemistry , Lipids/chemistry , Nutritive Value , Male , Female
20.
Analyst ; 149(11): 3140-3151, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38629585

ABSTRACT

Non-targeted analysis of high-resolution mass spectrometry (MS) can identify thousands of compounds, which also gives a huge challenge to their quantification. The aim of this study is to investigate the impact of mass spectrometry ionization efficiency on various compounds in food at different solvent ratios and to develop a predictive model for mass spectrometry ionization efficiency to enable non-targeted quantitative prediction of unknown compounds. This study covered 70 compounds in 14 different mobile phase ratio environments in positive ion mode to analyze the rules of the matrix effect. With the organic phase ratio from low to high, most compounds changed by 1.0 log units in log IE. The addition of formic acid enhanced the signal but also promoted the matrix effect, which often occurred in compounds with strong ionization capacity. It was speculated that the matrix effect was mainly in the form of competitive charge and charged droplet' gasification sites during MS detection. Subsequently, we present a log IE prediction method built using the COSMO-RS software and the artificial neural network (ANN) algorithm to address this difficulty and overcome the shortcomings of previous models, which always ignore the matrix effect. This model was developed following the principles of QSAR modeling recommended by the Organization for Economic Cooperation and Development (OECD). Furthermore, we validated this approach by predicting the log IE of 70 compounds, including those not involved in the log IE model development. The results presented demonstrate that the method we put forward has an excellent prediction accuracy for log IE (R2pred = 0.880), which means that it has the potential to predict the log IE of new compounds without authentic standards.

SELECTION OF CITATIONS
SEARCH DETAIL
...