Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 623(7987): 531-537, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37853122

ABSTRACT

Achieving both high efficiency and long-term stability is the key to the commercialization of perovskite solar cells (PSCs)1,2. However, the diversity of perovskite (ABX3) compositions and phases makes it challenging to fabricate high-quality films3-5. Perovskite formation relies on the reaction between AX and BX2, whereas most conventional methods for film-growth regulation are based solely on the interaction with the BX2 component. Herein, we demonstrate an alternative approach to modulate reaction kinetics by anion-π interaction between AX and hexafluorobenzene (HFB). Notably, these two approaches are independent but work together to establish 'dual-site regulation', which achieves a delicate control over the reaction between AX and BX2 without unwanted intermediates. The resultant formamidinium lead halides (FAPbI3) films exhibit fewer defects, redshifted absorption and high phase purity without detectable nanoscale δ phase. Consequently, we achieved PSCs with power conversion efficiency (PCE) up to 26.07% for a 0.08-cm2 device (25.8% certified) and 24.63% for a 1-cm2 device. The device also kept 94% of its initial PCE after maximum power point (MPP) tracking for 1,258 h under full-spectrum AM 1.5 G sunlight at 50 ± 5 °C. This method expands the range of chemical interactions that occur in perovskite precursors by exploring anion-π interactions and highlights the importance of the AX component as a new and effective working site to improved photovoltaic devices with high quality and phase purity.

2.
Nano Lett ; 23(7): 2764-2770, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37010357

ABSTRACT

Two-dimensional (2D) semiconductors such as monolayer molybdenum disulfide (MoS2) are promising building blocks for ultrascaled field effect transistors (FETs), benefiting from their atomic thickness, dangling-bond-free flat surface, and excellent gate controllability. However, despite great prospects, the fabrication of 2D ultrashort channel FETs with high performance and uniformity remains a challenge. Here, we report a self-encapsulated heterostructure undercut technique for the fabrication of sub-10 nm channel length MoS2 FETs. The fabricated 9 nm channel MoS2 FETs exhibit superior performances compared with sub-15 nm channel length including the competitive on-state current density of 734/433 µA/µm at VDS = 2/1 V, record-low DIBL of ∼50 mV/V, and superior on/off ratio of 3 × 107 and low subthreshold swing of ∼100 mV/dec. Furthermore, the ultrashort channel MoS2 FETs fabricated by this new technique show excellent homogeneity. Thanks to this, we scale the monolayer inverter down to sub-10 nm channel length.

3.
Angew Chem Int Ed Engl ; 62(24): e202303176, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37060295

ABSTRACT

Possessed with advantageous optoelectronic properties, perovskites have boosted the rapid development of solution-processed solar cells. The performance of perovskite solar cells (PSCs) is significantly weakened by the carrier loss at grain boundary grooves (GBGs); however, it receives limited attention and there lacks effective approach to solve this issue. Herein, for the first time, we constructed the tungstate/perovskite heterointerface via a "two step" in situ reaction approach that provides effective defect passivation and ensures efficient carrier dynamics at the GBGs. The exposed perovskite at grain boundaries is converted to wide-band-gap PbWO4 via an in-situ reaction between Pb2+ and tungstate ions, which passivate defects due to the strong ionic bonding. Moreover, recombination loss is further suppressed via the heterointerface energetics modification based on an additional transformation from PbWO4 to CaWO4 . PSCs based on this groove modification strategy showed good universality in both normal and inverted structure, with an improved efficiency of 23.25 % in the n-i-p device and 23.33 % in the p-i-n device. Stable power output of the modified device could maintain 91.7 % after around 1100 h, and the device efficiency could retain 92.5 % after aging in air for around 2110 h, and 93.1 % after aging at 85 °C in N2 for 972 h.

4.
Nature ; 617(7959): 86-91, 2023 05.
Article in English | MEDLINE | ID: mdl-36991124

ABSTRACT

Ice is present everywhere on Earth and has an essential role in several areas, such as cloud physics, climate change and cryopreservation. The role of ice is determined by its formation behaviour and associated structure. However, these are not fully understood1. In particular, there is a long-standing debate about whether water can freeze to form cubic ice-a currently undescribed phase in the phase space of ordinary hexagonal ice2-6. The mainstream view inferred from a collection of laboratory data attributes this divergence to the inability to discern cubic ice from stacking-disordered ice-a mixture of cubic and hexagonal sequences7-11. Using cryogenic transmission electron microscopy combined with low-dose imaging, we show here the preferential nucleation of cubic ice at low-temperature interfaces, resulting in two types of separate crystallization of cubic ice and hexagonal ice from water vapour deposition at 102 K. Moreover, we identify a series of cubic-ice defects, including two types of stacking disorder, revealing the structure evolution dynamics supported by molecular dynamics simulations. The realization of direct, real-space imaging of ice formation and its dynamic behaviour at the molecular level provides an opportunity for ice research at the molecular level using transmission electron microscopy, which may be extended to other hydrogen-bonding crystals.

5.
Nanoscale ; 13(1): 124-130, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33326538

ABSTRACT

All-inorganic lead halide perovskites (AILHPs) quantum dots (QDs) have been widely investigated as promising materials for optoelectronic applications because of their outstanding luminescence properties. Lead leakage, a common impurity and environmental pollution source that majorly hinders the commercialization of lead halide perovskite devices, has lately attracted considerable attention. Its detrimental influence on the luminescence performance has been widely reported. However, an in-depth experimental study of the chemistry geometry relating to lead leakage in CsPbBr3 QDs has been rarely reported to date. Herein, combining real-time (scanning) transmission electron microscopy ((S)TEM) with density functional theory calculations, we showed detailed atomic and electronic structure study of the phase boundaries in CsPbBr3 QDs during the lead leakage process. A phenomenon of two-phase coexistence was reported to be linked with the lead precipitating in CsPbBr3 QDs. A phase boundary between the Ruddlesden-Popper (RP) phase and conventional orthorhombic perovskite was developed when the lead particle was aggregating in the QDs. Our results suggested that in considering the detrimental exciton quenching process not only the role of lead nanoparticles should be considered but also the influence of the phase boundary on electron-hole transport is worthy of attention. The direct visualization of the delicate atomic and electronic structures associated with lead aggregation in CsPbBr3 sheds light on how the leakage process influences the luminescence performance and provides a potential route for suppressing the generation of environmentally harmful byproducts for advanced devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...