Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
JCI Insight ; 7(21)2022 11 08.
Article in English | MEDLINE | ID: mdl-36173682

ABSTRACT

I.v. administration of a high-affinity carbon monoxide-binding (CO-binding) molecule, recombinant neuroglobin, can improve survival in CO poisoning mouse models. The current study aims to discover how biochemical variables of the scavenger determine the CO removal from the RBCs by evaluating 3 readily available hemoproteins, 2,3-diphosphoglycerate stripped human hemoglobin (StHb); N-ethylmaleimide modified hemoglobin (NEMHb); and equine myoglobin (Mb). These molecules efficiently sequester CO from hemoglobin in erythrocytes in vitro. A kinetic model was developed to predict the CO binding efficacy for hemoproteins, based on their measured in vitro oxygen and CO binding affinities, suggesting that the therapeutic efficacy of hemoproteins for CO poisoning relates to a high M value, which is the binding affinity for CO relative to oxygen (KA,CO/KA,O2). In a lethal CO poisoning mouse model, StHb, NEMHb, and Mb improved survival by 100%, 100%, and 60%, respectively, compared with saline controls and were well tolerated in 48-hour toxicology assessments. In conclusion, both StHb and NEMHb have high CO binding affinities and M values, and they scavenge CO efficiently in vitro and in vivo, highlighting their therapeutic potential for point-of-care antidotal therapy of CO poisoning.


Subject(s)
Carbon Monoxide Poisoning , Mice , Animals , Horses , Humans , Carbon Monoxide Poisoning/therapy , Carbon Monoxide/metabolism , Oxygen/metabolism , Hemoglobins , Kinetics , Disease Models, Animal
2.
J Biol Chem ; 295(19): 6357-6371, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32205448

ABSTRACT

Carbon monoxide (CO) remains the most common cause of human poisoning. The consequences of CO poisoning include cardiac dysfunction, brain injury, and death. CO causes toxicity by binding to hemoglobin and by inhibiting mitochondrial cytochrome c oxidase (CcO), thereby decreasing oxygen delivery and inhibiting oxidative phosphorylation. We have recently developed a CO antidote based on human neuroglobin (Ngb-H64Q-CCC). This molecule enhances clearance of CO from red blood cells in vitro and in vivo Herein, we tested whether Ngb-H64Q-CCC can also scavenge CO from CcO and attenuate CO-induced inhibition of mitochondrial respiration. Heart tissue from mice exposed to 3% CO exhibited a 42 ± 19% reduction in tissue respiration rate and a 33 ± 38% reduction in CcO activity compared with unexposed mice. Intravenous infusion of Ngb-H64Q-CCC restored respiration rates to that of control mice correlating with higher electron transport chain CcO activity in Ngb-H64Q-CCC-treated compared with PBS-treated, CO-poisoned mice. Further, using a Clark-type oxygen electrode, we measured isolated rat liver mitochondrial respiration in the presence and absence of saturating solutions of CO (160 µm) and nitric oxide (100 µm). Both CO and NO inhibited respiration, and treatment with Ngb-H64Q-CCC (100 and 50 µm, respectively) significantly reversed this inhibition. These results suggest that Ngb-H64Q-CCC mitigates CO toxicity by scavenging CO from carboxyhemoglobin, improving systemic oxygen delivery and reversing the inhibitory effects of CO on mitochondria. We conclude that Ngb-H64Q-CCC or other CO scavengers demonstrate potential as antidotes that reverse the clinical and molecular effects of CO poisoning.


Subject(s)
Carbon Monoxide Poisoning/metabolism , Carbon Monoxide/toxicity , Mitochondria, Heart/metabolism , Mitochondria, Liver/metabolism , Neuroglobin/metabolism , Animals , Carbon Monoxide Poisoning/pathology , Carboxyhemoglobin/metabolism , Humans , Male , Mice , Mitochondria, Heart/pathology , Mitochondria, Liver/pathology , Nitric Oxide/metabolism , Nitric Oxide/pharmacology , Oxygen Consumption/drug effects , Rats
3.
Cardiovasc Res ; 115(11): 1646-1658, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30715251

ABSTRACT

AIMS: We previously reported that sodium-dependent glucose cotransporter 1 (SGLT1) is highly expressed in cardiomyocytes and is further up-regulated in ischaemia. This study aimed to determine the mechanisms by which SGLT1 contributes to ischaemia/reperfusion (I/R) injury. METHODS AND RESULTS: Mice with cardiomyocyte-specific knockdown of SGLT1 (TGSGLT1-DOWN) and wild-type controls were studied. In vivo, the left anterior descending coronary artery was ligated for 30 min and reperfused for 48 h. Ex vivo, isolated perfused hearts were exposed to 20 min no-flow and up to 2 h reperfusion. In vitro, HL-1 cells and isolated adult murine ventricular cardiomyocytes were exposed to 1 h hypoxia and 24 h reoxygenation (H/R). We found that TGSGLT1-DOWN hearts were protected from I/R injury in vivo and ex vivo, with decreased infarct size, necrosis, dysfunction, and oxidative stress. 5'-AMP-activated protein kinase (AMPK) activation increased SGLT1 expression, which was abolished by extracellular signal-related kinase (ERK) inhibition. Co-immunoprecipitation studies showed that ERK, but not AMPK, interacts directly with SGLT1. AMPK activation increased binding of the hepatocyte nuclear factor 1 and specificity protein 1 transcription factors to the SGLT1 gene, and HuR to SGLT1 mRNA. In cells, up-regulation of SGLT1 during H/R was abrogated by AMPK inhibition. Co-immunoprecipitation studies showed that SGLT1 interacts with epidermal growth factor receptor (EGFR), and EGFR interacts with protein kinase C (PKC). SGLT1 overexpression activated PKC and NADPH oxidase 2 (Nox2), which was attenuated by PKC inhibition, EGFR inhibition, and/or disruption of the interaction between EGFR and SGLT1. CONCLUSION: During ischaemia, AMPK up-regulates SGLT1 through ERK, and SGLT1 interacts with EGFR, which in turn increases PKC and Nox2 activity and oxidative stress. SGLT1 may represent a novel therapeutic target for mitigating I/R injury.


Subject(s)
Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Sodium-Glucose Transporter 1/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Cell Line , Disease Models, Animal , ELAV-Like Protein 1/metabolism , ErbB Receptors/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Hepatocyte Nuclear Factor 1/metabolism , Male , Mice, Knockout , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/pathology , NADPH Oxidase 2/metabolism , NADPH Oxidases/metabolism , Necrosis , Oxidative Stress , Protein Kinase C/metabolism , Signal Transduction , Sodium-Glucose Transporter 1/deficiency , Sodium-Glucose Transporter 1/genetics
4.
Sci Transl Med ; 8(368): 368ra173, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27928027

ABSTRACT

Carbon monoxide (CO) is a leading cause of poisoning deaths worldwide, with no available antidotal therapy. We introduce a potential treatment paradigm for CO poisoning, based on near-irreversible binding of CO by an engineered human neuroglobin (Ngb). Ngb is a six-coordinate hemoprotein, with the heme iron coordinated by two histidine residues. We mutated the distal histidine to glutamine (H64Q) and substituted three surface cysteines with less reactive amino acids to form a five-coordinate heme protein (Ngb-H64Q-CCC). This molecule exhibited an unusually high affinity for gaseous ligands, with a P50 (partial pressure of O2 at which hemoglobin is half-saturated) value for oxygen of 0.015 mmHg. Ngb-H64Q-CCC bound CO about 500 times more strongly than did hemoglobin. Incubation of Ngb-H64Q-CCC with 100% CO-saturated hemoglobin, either cell-free or encapsulated in human red blood cells, reduced the half-life of carboxyhemoglobin to 0.11 and 0.41 min, respectively, from ≥200 min when the hemoglobin or red blood cells were exposed only to air. Infusion of Ngb-H64Q-CCC to CO-poisoned mice enhanced CO removal from red blood cells, restored heart rate and blood pressure, increased survival, and was followed by rapid renal elimination of CO-bound Ngb-H64Q-CCC. Heme-based scavenger molecules with very high CO binding affinity, such as our mutant five-coordinate Ngb, are potential antidotes for CO poisoning by virtue of their ability to bind and eliminate CO.


Subject(s)
Carbon Monoxide Poisoning/diagnosis , Erythrocytes/metabolism , Globins/genetics , Globins/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Animals , Blood Pressure , Brain/metabolism , Carbon Monoxide/chemistry , Carboxyhemoglobin/genetics , Gases , Genetic Engineering/methods , Hemodynamics , Humans , Kinetics , Ligands , Male , Mice , Mice, Inbred C57BL , Mutation , Neuroglobin , Oxygen/chemistry , Pressure , Protein Binding , Recombinant Proteins/chemistry
5.
PLoS One ; 11(12): e0167681, 2016.
Article in English | MEDLINE | ID: mdl-27936050

ABSTRACT

Most studies of the mechanisms leading to hereditary dilated cardiomyopathy (DCM) have been performed in reconstituted in vitro systems. Genetically engineered murine models offer the opportunity to dissect these mechanisms in vivo. We generated a gene-targeted knock-in murine model of the autosomal dominant Arg141Trp (R141W) mutation in Tnnt2, which was first described in a human family with DCM. Mice heterozygous for the mutation (Tnnt2R141W/+) recapitulated the human phenotype, developing left ventricular dilation and reduced contractility. There was a gene dosage effect, so that the phenotype in Tnnt2R141W/+mice was attenuated by transgenic overexpression of wildtype Tnnt2 mRNA transcript. Male mice exhibited poorer survival than females. Biomechanical studies on skinned fibers from Tnnt2R141W/+ hearts showed a significant decrease in pCa50 (-log[Ca2+] required for generation of 50% of maximal force) relative to wildtype hearts, indicating Ca2+ desensitization. Optical mapping studies of Langendorff-perfused Tnnt2R141W/+ hearts showed marked increases in diastolic and peak systolic intracellular Ca2+ ([Ca2+]i), and prolonged systolic rise and diastolic fall of [Ca2+]i. Perfused Tnnt2R141W/+ hearts had slower intrinsic rates in sinus rhythm and reduced peak heart rates in response to isoproterenol. Tnnt2R141W/+ hearts exhibited a reduction in phosphorylated phospholamban relative to wildtype mice. However, crossing Tnnt2R141W/+ mice with phospholamban knockout (Pln-/-) mice, which exhibit increased Ca2+ transients and contractility, had no effect on the DCM phenotype. We conclude that the Tnnt2 R141W mutation causes a Ca2+ desensitization and mice adapt by increasing Ca2+-transient amplitudes, which impairs Ca2+ handling dynamics, metabolism and responses to ß-adrenergic activation.


Subject(s)
Calcium/metabolism , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Heart/physiopathology , Point Mutation , Troponin T/genetics , Animals , Cardiomyopathy, Dilated/physiopathology , Female , Gene Knock-In Techniques , Gene Targeting , Humans , Male , Mice , Mice, Transgenic , Myocardial Contraction
6.
J Mol Cell Cardiol ; 49(4): 683-92, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20600102

ABSTRACT

Human mutations in the gene PRKAG2 encoding the gamma2 subunit of AMP-activated protein kinase (AMPK) cause a glycogen storage cardiomyopathy. Transgenic mice (TG(T400N)) with the human T400N mutation exhibit inappropriate activation of AMPK and consequent glycogen storage in the heart. Although increased glucose uptake and activation of glycogen synthesis have been documented in PRKAG2 cardiomyopathy, the mechanism of increased glucose uptake has been uncertain. Wildtype (WT), TG(T400N), and TG(alpha2DN) (carrying a dominant negative, kinase dead alpha2 catalytic subunit of AMPK) mice were studied at ages 2-8 weeks. Cardiac mRNA expression of sodium-dependent glucose transporter 1 (SGLT1), but not facilitated-diffusion glucose transporter 1 (GLUT1) or GLUT4, was increased approximately 5- to 7-fold in TG(T400N) mice relative to WT. SGLT1 protein was similarly increased at the cardiac myocyte sarcolemma in TG(T400N) mice. Phlorizin, a specific SGLT1 inhibitor, attenuated cardiac glucose uptake in TG(T400N) mice by approximately 40%, but not in WT mice. Chronic phlorizin treatment reduced cardiac glycogen content by approximately 25% in TG(T400N) mice. AICAR, an AMPK activator, increased cardiac SGLT1 mRNA expression approximately 3-fold in WT mice. Relative to TG(T400N) mice, double transgenic (TG(T400N)/TG(alpha2DN)) mice had decreased ( approximately 50%) cardiac glucose uptake and decreased (approximately 70%) cardiac SGLT1 expression. TG(T400N) hearts had increased binding activity of the transcription factors HNF-1 and Sp1 to the promoter of the gene encoding SGLT1. Our data suggest that upregulation of cardiac SGLT1 is responsible for increased cardiac glucose uptake in the TG(T400N) mouse. Increased AMPK activity leads to upregulation of SGLT1, which in turn mediates increased cardiac glucose uptake.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Sodium-Glucose Transporter 1/metabolism , AMP-Activated Protein Kinases/genetics , Animals , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Chromatin Immunoprecipitation , Humans , Mice , Mice, Transgenic , Polymerase Chain Reaction , Sodium-Glucose Transporter 1/genetics
7.
Biochim Biophys Acta ; 1802(2): 284-91, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20005292

ABSTRACT

Human mutations in PRKAG2, the gene encoding the gamma2 subunit of AMP activated protein kinase (AMPK), cause a glycogen storage cardiomyopathy. In a transgenic mouse with cardiac specific expression of the Thr400Asn mutation in PRKAG2 (TG(T400N)), we previously reported initial cardiac hypertrophy (ages 2-8 weeks) followed by dilation and failure (ages 12-20 weeks). We sought to elucidate the molecular mechanisms of cardiac hypertrophy. TG(T400N) mice showed significantly increased cardiac mass/body mass ratios up to approximately 3-fold beginning at age 2 weeks. Cardiac expression of ANP and BNP were approximately 2- and approximately 5-fold higher, respectively, in TG(T400N) relative to wildtype (WT) mice at age 2 weeks. NF-kappaB activity and nuclear translocation of the p50 subunit were increased approximately 2- to 3-fold in TG(T400N) hearts relative to WT during the hypertrophic phase. Phosphorylated Akt and p70S6K were elevated approximately 2-fold as early as age 2 weeks. To ascertain whether these changes in TG(T400N) mice were a consequence of increased AMPK activity, we crossbred TG(T400N) with TG(alpha2DN) mice, which express a dominant negative, kinase dead mutant of the AMPK alpha2 catalytic subunit and have low myocardial AMPK activity. Genetic reversal of AMPK overactivity led to a reduction in hypertrophy, nuclear translocation of NF-kappaB, phosphorylated Akt, and p70S6K. We conclude that inappropriate activation of AMPK secondary to the T400N PRKAG2 mutation is associated with the early activation of NF-kappaB and Akt signaling pathway, which mediates cardiac hypertrophy.


Subject(s)
AMP-Activated Protein Kinases/genetics , Amino Acid Substitution , Cardiomegaly/genetics , Cardiomegaly/physiopathology , Glycogen Storage Disease Type IIb/physiopathology , AMP-Activated Protein Kinases/chemistry , AMP-Activated Protein Kinases/metabolism , Animals , Asparagine , Cardiomegaly/enzymology , DNA Primers , Glycogen Storage Disease Type IIb/enzymology , Glycogen Storage Disease Type IIb/genetics , Heart/physiology , Heart/physiopathology , Humans , Mice , Mice, Transgenic , NF-kappa B/metabolism , Phosphorylation , Polymerase Chain Reaction/methods , RNA/genetics , RNA/isolation & purification , Threonine , Up-Regulation
8.
PLoS One ; 3(7): e2642, 2008 Jul 09.
Article in English | MEDLINE | ID: mdl-18612386

ABSTRACT

BACKGROUND: Hypertrophic (HCM) and dilated (DCM) cardiomyopathies result from sarcomeric protein mutations, including cardiac troponin T (cTnT, TNNT2). We determined whether TNNT2 mutations cause cardiomyopathies by altering cTnT function or quantity; whether the severity of DCM is related to the ratio of mutant to wildtype cTnT; whether Ca(2+) desensitization occurs in DCM; and whether absence of cTnT impairs early embryonic cardiogenesis. METHODS AND FINDINGS: We ablated Tnnt2 to produce heterozygous Tnnt2(+/-) mice, and crossbreeding produced homozygous null Tnnt2(-/-) embryos. We also generated transgenic mice overexpressing wildtype (TG(WT)) or DCM mutant (TG(K210Delta)) Tnnt2. Crossbreeding produced mice lacking one allele of Tnnt2, but carrying wildtype (Tnnt2(+/-)/TG(WT)) or mutant (Tnnt2(+/-)/TG(K210Delta)) transgenes. Tnnt2(+/-) mice relative to wildtype had significantly reduced transcript (0.82+/-0.06[SD] vs. 1.00+/-0.12 arbitrary units; p = 0.025), but not protein (1.01+/-0.20 vs. 1.00+/-0.13 arbitrary units; p = 0.44). Tnnt2(+/-) mice had normal hearts (histology, mass, left ventricular end diastolic diameter [LVEDD], fractional shortening [FS]). Moreover, whereas Tnnt2(+/-)/TG(K210Delta) mice had severe DCM, TG(K210Delta) mice had only mild DCM (FS 18+/-4 vs. 29+/-7%; p<0.01). The difference in severity of DCM may be attributable to a greater ratio of mutant to wildtype Tnnt2 transcript in Tnnt2(+/-)/TG(K210Delta) relative to TG(K210Delta) mice (2.42+/-0.08, p = 0.03). Tnnt2(+/-)/TG(K210Delta) muscle showed Ca(2+) desensitization (pCa(50) = 5.34+/-0.08 vs. 5.58+/-0.03 at sarcomere length 1.9 microm, p<0.01), but no difference in maximum force generation. Day 9.5 Tnnt2(-/-) embryos had normally looped hearts, but thin ventricular walls, large pericardial effusions, noncontractile hearts, and severely disorganized sarcomeres. CONCLUSIONS: Absence of one Tnnt2 allele leads to a mild deficit in transcript but not protein, leading to a normal cardiac phenotype. DCM results from abnormal function of a mutant protein, which is associated with myocyte Ca(2+) desensitization. The severity of DCM depends on the ratio of mutant to wildtype Tnnt2 transcript. cTnT is essential for sarcomere formation, but normal embryonic heart looping occurs without contractile activity.


Subject(s)
Cardiomyopathy, Dilated/genetics , Heart/embryology , Troponin T/genetics , Troponin T/physiology , Animals , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Hypertrophic/metabolism , Echocardiography , Embryo, Mammalian/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Myocardium/metabolism , Phenotype , Troponin T/metabolism
9.
Lab Invest ; 85(11): 1342-56, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16170337

ABSTRACT

Outside-in signaling from fibronectin (FN) through integrin receptors has been shown to play an important role in promoting cardiac myocyte hypertrophy and synergizes with other hypertrophic stimuli such as the alpha-adrenergic agonist phenylephrine (PE) and mechanical strain. The integrin-linked kinase (ILK) is a critical molecule involved in cell adhesion, motility and survival in nonmyocytes such as fibroblasts and epithelial cells. Its role in cardiac myocytes is unclear. In this study, we demonstrate that (1) ILK forms a complex with PINCH1 and alpha-parvin proteins (IPAP1 complex) in neonatal rat ventricular myocytes; (2) localization of IPAP1 complex proteins to costameres in cardiac myocytes is stimulated by FN, PE and synergistically by the combination of FN and PE in an integrin beta1-dependent manner; (3) a dominant-negative mutant lacking the PINCH-binding N-terminus of ILK (ILK-C) prevents costamere association of ILK and alpha-parvin, but not PINCH1; (4) FN- and PE-induced hypertrophy, measured by increased protein/DNA ratio, beating frequency and atrial natriuretic peptide expression, is stimulated by low levels of ILK-C but repressed by high ILK-C expression; and (5) overexpression of ILK-C, as well as deletion of the ILK gene in mouse neonatal ventricular myocytes, induces marked apoptosis of cardiac myocytes. These results suggest that the IPAP1 complex plays an important role in mediating integrin-signaling pathways that regulate cardiac myocyte hypertrophy and resistance to apoptosis.


Subject(s)
Actinin/metabolism , DNA-Binding Proteins/metabolism , Myocardium/pathology , Myocytes, Cardiac/pathology , Protein Serine-Threonine Kinases/metabolism , Adaptor Proteins, Signal Transducing , Adenoviridae/genetics , Adrenergic alpha-Agonists/pharmacology , Animals , Animals, Newborn , Atrial Natriuretic Factor/metabolism , Cell Culture Techniques , Cells, Cultured , Drug Synergism , Fibronectins/pharmacology , Heart Ventricles/cytology , Hypertrophy , LIM Domain Proteins , Membrane Proteins , Mice , Phenylephrine/pharmacology , Protein Serine-Threonine Kinases/genetics , Proteins/analysis , RNA, Messenger/analysis , Rats , Rats, Sprague-Dawley
10.
Physiol Genomics ; 18(3): 273-83, 2004 Aug 11.
Article in English | MEDLINE | ID: mdl-15306692

ABSTRACT

Fibronectin (FN) is an extracellular matrix protein that binds to integrin receptors and couples cardiac myocytes to the basal lamina. Cardiac FN expression is elevated in models of pressure overload, and FN causes cultured cardiac myocytes to hypertrophy by a mechanism that has not been characterized in detail. In this study, we analyzed the gene expression changes induced by FN in purified rat neonatal ventricular myocytes using the Affymetrix RAE230A microarray, to understand how FN affects gene expression in cardiac myocytes and to separate the effects contributed by cardiac nonmyocytes in vivo. Pathway analysis using z-score statistics and comparison with a mouse model of cardiac hypertrophy revealed several pathways stimulated by FN in cardiac myocytes. In addition to the known cardiac myocyte hypertrophy markers, FN significantly induced metabolic pathways including virtually all of the enzymes of cholesterol biosynthesis, fatty acid biosynthesis, and the mitochondrial electron transport chain. FN also increased the expression of genes coding for ribosomal proteins, translation factors, and the ubiquitin-proteasome pathway. Interestingly, cardiac myocytes plated on FN showed elevated expression of the fibrosis-promoting peptides connective tissue growth factor (CTGF), WNT1 inducible signaling pathway protein 2 (WISP2), and secreted acidic cysteine-rich glycoprotein (SPARC). Our data complement in vivo studies and reveal several novel genes and pathways stimulated by FN, pointing to cardiac myocyte-specific mechanisms that lead to development of the hypertrophic phenotype.


Subject(s)
Fibronectins/pharmacology , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/genetics , Hypertrophy/chemically induced , Hypertrophy/genetics , Myocytes, Cardiac/chemistry , Myocytes, Cardiac/metabolism , Animals , Animals, Newborn , Aortic Diseases/genetics , Cells, Cultured , Cytoskeletal Proteins/genetics , Disease Models, Animal , Electron Transport/genetics , Gene Expression Profiling/methods , Genes/genetics , Heart Ventricles/chemistry , Heart Ventricles/metabolism , Heart Ventricles/pathology , Mice , Myocytes, Cardiac/pathology , Protein Biosynthesis/genetics , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction/methods , Up-Regulation/drug effects , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...