Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 472: 134502, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38743980

ABSTRACT

The development of intelligently released and environmentally safe nanocarriers not only aligns with the sustainable agricultural strategy but also offers a potential solution for controlling severe soil-borne bacterial diseases. Herein, the core-shell structured nanocarrier loaded with honokiol bactericide (honokiol@ZnO-ZIF-8) was synthesized via a one-pot method for the targeted control of Ralstonia solanacearum, the causative agent of tobacco bacterial wilt disease. Results indicated that honokiol@ZnO-ZIF-8 nanoparticles induced bacterial cell membrane and DNA damage through the production of excessive reactive oxygen species (ROS), thereby reducing bacterial cell viability and ultimately leading to bacterial death. Additionally, the dissociation mechanism of the nanocarriers was elucidated for the first time through thermodynamic computational simulation. The nanocarriers dissociate primarily due to H+ attacking the N atom on imidazole, causing the rupture of the Zn-N bond under acidic conditions and at room temperature. Furthermore, honokiol@ZnO-ZIF-8 exhibited potent inhibitory effects against other prominent Solanaceae pathogenic bacteria (Pseudomonas syringae pv. tabaci), demonstrating its broad-spectrum antibacterial activity. Biosafety assessment results indicated that honokiol@ZnO-ZIF-8 exhibited non-phytotoxicity towards tobacco and tomato plants, with its predominant accumulation in the roots and no translocation to aboveground tissues within a short period. This study provides potential application value for the intelligent release of green pesticides. ENVIRONMENT IMPLICATION: The indiscriminate use of agrochemicals poses a significant threat to environmental, ecological security, and sustainable development. Slow-release pesticides offer a green and durable strategy for crop disease control. In this study, we developed a non-phytotoxic and pH-responsive honokiol@ZnO-ZIF-8 nano-bactericide based on the pathogenesis of Ralstonia solanacearum. Thermodynamic simulation revealed the dissociation mechanism of ZIF-8, with different acidity controlling the dissociation rate. This provides a theoretical basis for on-demand pesticide release while reducing residue in the. Our findings provide strong evidence for effective soil-borne bacterial disease control and on-demand pesticide release.


Subject(s)
Anti-Bacterial Agents , Biphenyl Compounds , Lignans , Ralstonia solanacearum , Ralstonia solanacearum/drug effects , Lignans/pharmacology , Lignans/chemistry , Biphenyl Compounds/chemistry , Hydrogen-Ion Concentration , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Zinc Oxide/chemistry , Zinc Oxide/toxicity , Zinc Oxide/pharmacology , Soil Microbiology , Nanoparticles/chemistry , Nanoparticles/toxicity , Plant Diseases/microbiology , Plant Diseases/prevention & control , Reactive Oxygen Species/metabolism , Allyl Compounds , Phenols
2.
Pest Manag Sci ; 80(4): 2096-2108, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38135506

ABSTRACT

BACKGROUND: Phytophthora capsici, a refractory and model oomycete plant pathogen, especially threatens multiple vegetable crops. A limited number of chemical pesticides play a vital role in controlling oomycete plant diseases. However, this approach often leads to excessive use of chemical agent, exacerbates environmental issues and more and more drug-resistant strains of oomycete. Therefore, it is imperative to devise innovative solutions that can effectively address the infection of oomycete while maintaining high levels of environmental sustainability and low toxicity. RESULTS: In this study, g-C3 N4 @ZnO heterostructure was synthesized and characterized. The g-C3 N4 @ZnO showed higher toxicity on Phytophthora capsici than graphitic carbon nitride (g-C3 N4 ) nanosheets and zinc oxide (ZnO) nanoparticles in vitro and in vivo. Except the hyphal growth of Phytophthora capsici, their germination rate of spores, sporangium formation and number of spores were all suppressed by g-C3 N4 @ZnO heterostructure. Furthermore, we found that this g-C3 N4 @ZnO heterostructure has higher photocatalytic activity under visible light, which potentially enhanced the reactive oxygen species (ROS) mediated stress on Phytophthora capsici. Ultrastructural morphology, global changes of gene expression and weighted gene co-expression network analysis all supported that the anti-oomycete activity of g-C3 N4 @ZnO was manifested in the destruction of membrane system and inhibition of multiple metabolisms of Phytophthora capsici under visible irradiation, which also could be attributed to the ROS and zinc ion (Zn2+ ) mediated stress. CONCLUSION: This works offers a novel oomycete disease management strategy by using g-C3 N4 @ZnO, which were attributed to the ROS stress, destruction of membrane system and inhibition of multiple metabolisms. © 2023 Society of Chemical Industry.


Subject(s)
Anti-Infective Agents , Nanoparticles , Phytophthora , Zinc Oxide , Zinc Oxide/pharmacology , Reactive Oxygen Species , Anti-Infective Agents/pharmacology , Plant Diseases
3.
Pest Manag Sci ; 79(12): 5140-5151, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37609876

ABSTRACT

BACKGROUND: The utilization of non-metallic inorganic nanomaterials for antimicrobial photocatalytic technology has emerged as a promising approach to combat drug-resistant bacteria. Recently, g-C3 N4 nanosheets have attracted significant attention due to their exceptional stability, degradability, low cost, and remarkable antibacterial properties. In this study, a facile electrostatic self-assembly approach was utilized to functionalize ZnO nanoparticles with g-C3 N4 nanosheets, resulting in the formation of g-C3 N4 @ZnO nanoparticle composites. RESULTS: The Z-shaped heterojunction architecture of these composites facilitates efficient separation of photogenerated electron-hole pairs and enhances visible light catalytic performance. Moreover, the formation of the g-C3 N4 @ZnO heterostructure showed a higher photocatalytic capacity and the generation of reactive oxygen species (ROS) than g-C3 N4 nanosheets. The photocatalytic antibacterial mechanisms of g-C3 N4 @ZnO at the transcriptomic level primarily involve disrupting bacterial membrane synthesis and inhibiting motility and energy metabolism. Therefore, the antibacterial mechanism of g-C3 N4 @ZnO can be attributed to a combination of physical membrane damage, chemical damage (ROS enhancement) and inhibition of chemotaxis, biofilm formation and flagellar motility. CONCLUSION: These findings collectively provide novel high potential and insights into the practical application of photocatalysts in plant disease management. © 2023 Society of Chemical Industry.


Subject(s)
Wildfires , Zinc Oxide , Nicotiana , Reactive Oxygen Species , Zinc Oxide/pharmacology , Static Electricity , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...