Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Arch Otorhinolaryngol ; 281(3): 1409-1416, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38147115

ABSTRACT

OBJECTIVE: This study evaluated vocal fold leukoplakia using i-scan combined with laryngovideostroboscopy for risk assessment prediction. METHODS: A total of 141 patients with 218 lesions were enrolled in this study. Morphological characteristics of leukoplakia, assessment of the vascular pattern using i-scan, and vocal fold vibratory function were analyzed. RESULTS: The number of patients with no, mild, moderate, severe dysplasia, and invasive carcinoma were 68, 40, 17, 46 and 47, respectively. The sensitivity of morphological characteristic, vascular pattern, vibratory function and predictive model were 77.4%, 72%, 69.9%, and 82.8%, respectively. Receiver operating characteristic curve analysis of morphological characteristic, vascular pattern, vibratory function and predictive model were 0.771, 0.824, 0.769, and 0.923, respectively. The results of logistic regression analysis showed that rough morphological types, perpendicular vascular pattern, severe decrease and absence of mucosal waves increased the risk of malignancy (OR = 5.531, 4.973, and 16.992, respectively; P < 0.001). CONCLUSIONS: I-scan combined with laryngovideostroboscopy can improve the differential diagnosis of low-risk and high-risk vocal fold leukoplakia.


Subject(s)
Carcinoma , Laryngeal Diseases , Humans , Vocal Cords/pathology , Laryngeal Diseases/surgery , Leukoplakia/diagnostic imaging , Leukoplakia/pathology , Carcinoma/pathology , Hyperplasia/pathology
2.
Opt Express ; 31(10): 16010-16024, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157689

ABSTRACT

To improve color conversion performance for color display application, we study the near-field-induced nanoscale-cavity effects on the emission efficiency and Förster resonance energy transfer (FRET) under the condition of surface plasmon (SP) coupling by inserting colloidal quantum dots (QDs) and synthesized Ag nanoparticles (NPs) into surface nano-holes fabricated on a GaN template and an InGaN/GaN quantum-well (QW) template. In the QW template, the inserted Ag NPs are close to either QWs or QDs for producing three-body SP coupling to enhance color conversion. Time-resolved and continuous-wave photoluminescence (PL) behaviors of the QW- and QD-emitting lights are investigated. The comparison between the nano-hole samples and the reference samples of surface QD/Ag NP shows that the nanoscale-cavity effect of the nano-hole leads to the enhancements of QD emission, FRET between QDs, and FRET from QW into QD. The SP coupling induced by the inserted Ag NPs can enhance the QD emission and FRET from QW into QD. Its result is further enhanced through the nanoscale-cavity effect. The relative continuous-wave PL intensities among different color components also show the similar behaviors. By introducing SP coupling to a color conversion device with the FRET process in a nanoscale cavity structure, we can significantly improve the color conversion efficiency. Simulation results confirm the basic observations in experiment.

3.
Opt Express ; 31(4): 6327-6341, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36823892

ABSTRACT

To improve the color conversion performance, we study the nanoscale-cavity effects on the emission efficiency of a colloidal quantum dot (QD) and the Förster resonance energy transfer (FRET) from quantum well (QW) into QD in a GaN porous structure (PS). For this study, we insert green-emitting QD (GQD) and red-emitting QD (RQD) into the fabricated PSs in a GaN template and a blue-emitting QW template, and investigate the behaviors of the photoluminescence (PL) decay times and the intensity ratios of blue, green, and red lights. In the PS samples fabricated on the GaN template, we observe the efficiency enhancements of QD emission and the FRET from GQD into RQD, when compared with the samples of surface QDs, which is attributed to the nanoscale-cavity effect. In the PS samples fabricated on the QW template, the FRET from QW into QD is also enhanced. The enhanced FRET and QD emission efficiencies in a PS result in an improved color conversion performance. Because of the anisotropic PS in the sample surface plane, the polarization dependencies of QD emission and FRET are observed.

4.
Opt Express ; 30(17): 31322-31335, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36242217

ABSTRACT

Although the method of inserting colloidal quantum dots (QDs) into deep nano-holes fabricated on the top surface of a light-emitting diode (LED) has been widely used for producing effective Förster resonance energy transfer (FRET) from the LED quantum wells (QWs) into the QDs to enhance the color conversion efficiency, an important mechanism for enhancing energy transfer in such an LED structure was overlooked. This mechanism, namely, the nanoscale-cavity effect, represents a near-field Purcell effect and plays a crucially important role in enhancing the color conversion efficiency. Here, we demonstrate the results of LED performance, time-resolved photoluminescence (TRPL), and numerical simulation to elucidate the nanoscale-cavity effect on color conversion by inserting a photoresist solution of red-emitting QDs into the nano-holes fabricated on a blue-emitting QW LED. Based on the TRPL study of the inserted QDs in a nano-hole structure fabricated on an un-doped GaN template of no QW, it is found that the emission efficiency of the inserted QDs is significantly increased due to the nanoscale-cavity effect. From the simulation study, it is confirmed that this effect can also increase the FRET efficiency, particularly for those radiating dipoles in the QWs oriented perpendicular to the sidewalls of the nano-holes. In the nanoscale-cavity effect, the enhanced near field distribution inside a nano-hole excited by a light emitter modifies its own radiation behavior through the Purcell effect such that its far-field emission becomes stronger.

5.
Nanotechnology ; 33(13)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34905734

ABSTRACT

The variation behaviors of the morphology, transmission, and sheet resistance of the surface Ag/AgO nano-network (NNW) structures fabricated under different illumination conditions and with different Ag deposition thicknesses and thermal annealing temperatures in forming initial Ag nanoparticles (NPs) are studied. Generally, an NNW structure with a smaller mesh size or a denser branch distribution has a lower transmission and a lower sheet resistance level. Under the fabrication condition of a broader illumination spectrum, a lower thermal annealing temperature, or a thicker Ag deposition, we can obtain an NNW structure of a smaller mesh size. The mesh size of an NNW structure is basically controlled by the seed density of Brownian tree (BT) at the beginning of light illumination. A BT seed can be formed through a stronger local localized surface plasmon resonance for accelerating Ag oxidation in a certain region. Once an Ag/AgO BT seed is formed, the surrounding Ag NPs are reorganized to form the branches of a BT. Multiple BTs are connected to form a large-area NNW structure, which can serve as a transparent conductor. Under the fabrication conditions of a broader illumination spectrum, 3 nm Ag deposition, and 100 °C thermal annealing, we can implement an NNW structure to achieve ∼1.15µm in mesh size, ∼90 Ω sq-1in sheet resistance, and 93%-77% in transmittance within the wavelength range between 370 and 700 nm.

6.
Nanotechnology ; 32(13): 135206, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33271517

ABSTRACT

By forming nanodisk (ND) structures on a blue-emitting InGaN/GaN quantum-well (QW) template, the QWs become close to the red-emitting quantum dots (QDs) and Ag nanoparticles (NPs) attached onto the sidewalls of the NDs such that Förster resonance energy transfer (FRET) and surface plasmon (SP) coupling can occur to enhance the efficiency of blue-to-red color conversion. With a larger ND height, more QWs are exposed to open air on the sidewall for more QD/Ag NP attachment through QD self-assembly and Ag NP drop casting such that the FRET and SP coupling effects, and hence the color conversion efficiency can be enhanced. A stronger FRET process leads to a longer QD photoluminescence (PL) decay time and a shorter QW PL decay time. It is shown that SP coupling can enhance the FRET efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...