Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Biochem Pharmacol ; 225: 116250, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705537

ABSTRACT

Obesity has emerged as a prominent global health concern, with heat stress posing a significant challenge to both human health and animal well-being. Despite a growing interest in environmental determinants of obesity, very few studies have examined the associations between heat stress-related environmental factors and adiposity. Consequently, there exists a clear need to understand the molecular mechanisms underlying the obesogenic effects of heat stress and to formulate preventive strategies. This study focused on culturing porcine subcutaneous preadipocytes at 41.5 ℃ to induce heat stress, revealing that this stressor triggered apoptosis and fat deposition. Analysis demonstrated an upregulation in the expression of HSP70, BAX, adipogenesis-related genes (PPARγ, AP2, CEBPα and FAS), the p-AMPK/AMPK ratio and SIRT1, PGC-1α in the heat stress group compared to the control group (P < 0.05). Conversely, the expression of lipid lysis-related genes (ATGL, HSL and LPL) and Bcl-2 decreased in the heat stress group compared to the control group (P < 0.05). Furthermore, subsequent activator and/or inhibitor experiments validated that heat stress modulated HSP70 and AMPK signalling pathways to enhance lipogenesis and inhibit lipolysis in porcine subcutaneous preadipocytes. Importantly, this study reveals, for the first time, that EGCG mitigates heat-stress-induced fat deposition by targeting HSP70 through the activation of AMPK-SIRT1-PGC-1α in porcine subcutaneous preadipocytes. These findings elucidate the molecular mechanisms contributing to heat stress-induced obesity and provide a foundation for the potential clinical utilisation of EGCG as a preventive measure against both heat stress and obesity.


Subject(s)
Adipocytes , Catechin , HSP70 Heat-Shock Proteins , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Adipocytes/drug effects , Adipocytes/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Swine , Catechin/pharmacology , Catechin/analogs & derivatives , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , AMP-Activated Protein Kinases/metabolism , Heat-Shock Response/drug effects , Heat-Shock Response/physiology , Cells, Cultured , Subcutaneous Fat/metabolism , Subcutaneous Fat/drug effects
2.
Curr Issues Mol Biol ; 46(3): 2301-2319, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38534763

ABSTRACT

Increases in litter size, which are influenced by ovulation, are responsible for between 74% and 96% of the economic value of genetic progress, which influences selection. For the selection and breeding of highly prolific goats, genetic mechanisms underlying variations in litter size should be elucidated. Here, we used single-nucleus RNA sequencing to analyze 44,605 single nuclei from the ovaries of polytocous and monotocous goats during the follicular phase. Utilizing known reference marker genes, we identified 10 ovarian cell types characterized by distinct gene expression profiles, transcription factor networks, and reciprocal interaction signatures. An in-depth analysis of the granulosa cells revealed three subtypes exhibiting distinct gene expression patterns and dynamic regulatory mechanisms. Further investigation of cell-type-specific prolificacy-associated transcriptional changes elucidated that "downregulation of apoptosis", "increased anabolism", and "upstream responsiveness to hormonal stimulation" are associated with prolificacy. This study provides a comprehensive understanding of the cell-type-specific mechanisms and regulatory networks in the goat ovary, providing insights into the molecular mechanisms underlying goat prolificacy. These findings establish a vital foundation for furthering understanding of the molecular mechanisms governing folliculogenesis and for improving the litter size in goats via molecular design breeding.

3.
Meat Sci ; 209: 109411, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38061306

ABSTRACT

This research aims at uncovering the effects and investigating the molecular mechanisms of dietary resveratrol (RES) supplementation on antioxidant capacity and meat quality of pigs. In this study, 20 µM RES could activate the KEAP1-NRF2 antioxidant defense pathway in response to oxidative stress in porcine skeletal muscle satellite cells was firstly found. Then, twenty-four healthy crossbred castrated boars were allocated to 4 treatments that were fed with a basal diet (control) and a basal diet supplemented with 200 mg, 400 mg or 600 mg RES per Kilogram (kg) of feed for 41 days, respectively. 400 and 600 mg/kg RES-supplemented diet can effectively improve the meat quality traits and activities of antioxidizing enzymes via the KEAP1-NRF2 signaling pathway of pigs. The molecular dynamic simulation further revealed that RES could directly binding to KEAP1 to reduce the tightness of KEAP1-NRF2 protein-protein interaction. More importantly, dietary supplementation of RES also improves antioxidant capacity through a series of KEAP1-NRF2 pathway-related lncRNAs were found by RNA sequencing (RNA-seq). Altogether, this study demonstrated that RES improves meat quality traits by effectively increasing antioxidant levels via the lncRNA-KEAP1-NRF2 axis in vivo and/or in vitro. These results provide new insights into the molecular mechanisms by which RES, as a nutritional agent, regulates antioxidant capacity and improves meat quality in pigs.


Subject(s)
Antioxidants , RNA, Long Noncoding , Male , Animals , Swine , Resveratrol/pharmacology , Antioxidants/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Oxidative Stress , Meat/analysis
4.
J Nutr Biochem ; 117: 109351, 2023 07.
Article in English | MEDLINE | ID: mdl-37087074

ABSTRACT

Resveratrol (RES) is one of the best-known bioactive polyphenols that has received much attention in recent years because of its importance to anti-obesity. However, the exact mechanism underlying this effect and whether it can improve lipid metabolism by regulating the long-chain noncoding RNA (lncRNA) remains unclear. In this study, 24 healthy crossbred castrated boars were fed a basal diet (control) and a basal diet supplemented with 200 mg, 400 mg or 600 mg RES per Kilogram (kg) of feed for 41 d, respectively. We found that 400 mg/kg and 600 mg/kg RES-supplemented diet did not affect growth rate, but reduced significantly subcutaneous adipose thickness, carcass fat rate, greater dramatically the serum concentration of adiponectin and high-density lipoprotein in pigs. Further, we verified that RES could inhibit the formation and accumulation of lipid droplets by AdipoQ-AdipoR1-AMPKα and AdipoQ-AdipoR2-PPARα signal pathway in vivo and vitro (3T3-L1 preadipocytes). Transcriptome analyses found that 5 differently expressed (DE) lncRNAs and 77 mRNAs in subcutaneous adipose between control group and 400 mg/kg RES group, which mainly involved in "adipocytokine signaling pathway," "Wnt signaling pathway," "PI3K-Akt signaling pathway" and "MAPK signaling pathway." In conclusion, RES can inhibit the formation and accumulation of lipid droplets through AdipoQ signal pathway and lipid metabolism-related lncRNAs. Our results provide a new insight on the molecular mechanism of RES as a nutritional agents to the prevention and treatment for obesity.


Subject(s)
Lipid Metabolism , RNA, Long Noncoding , Male , Animals , Swine , Lipid Metabolism/genetics , RNA, Long Noncoding/genetics , Resveratrol/pharmacology , Lipid Droplets/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Obesity/metabolism , Signal Transduction
5.
Foods ; 12(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36981086

ABSTRACT

In mammals, skeletal muscle development is a complex biological process regulated by many factors. N6-methyladenosine (m6A) RNA modification plays an important role in many biological processes. However, the regulation of m6A on skeletal muscle growth and development in adult goats remains unclear. In this study, Duan goats (DA) and Nubia goats (NBY), both female and 12 months old, were selected as the research objects, and m6A-Seq and RNA-Seq were mainly used to detect the difference of m6A modification and gene expression during the development of the longissimus dorsi (LD) muscle in the two breeds. The results showed that compared with DA, the meat production performance of NBY was better than that of DA, and the modification level of m6A was higher than that of DA in LD. The m6A-Seq of LD indicated m6A peaks were mainly enriched in the coding sequence (CDS) and stop codon. A total of 161 differentially methylated genes (DMGs) and 1294 differentially expressed genes (DEGs) were identified in two breeds. GO and KEGG analysis showed that DMGs were closely related to cellular metabolism, and most of DMGs were enriched in pathways related to energy metabolism, muscle growth and development, mainly MAPK signaling pathway, Wnt signaling pathway and CGMP-PKG signaling pathway. The DEGs were significantly enriched in actin binding, calcium ion binding, angiogenesis, and other biological processes, and most of them were enriched in PI3K-Akt and CGMP-PKG signaling pathways. Combined analysis of m6A-Seq and RNA-Seq data revealed a negative correlation between differentially methylated m6A levels and mRNA abundance, and mRNA expression of the gene with m6A peak near 3'UTR will decrease. In addition, 11 DMGs regulating cell differentiation, muscle growth and development were identified. This study displayed the m6A profiles and distribution patterns in the goat transcriptome, determined the potential role of m6A modification in muscle growth and provided a new reference for the further study of goat skeletal muscle development.

6.
Genes (Basel) ; 14(2)2023 01 25.
Article in English | MEDLINE | ID: mdl-36833242

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate several pathway intermediates and affect the skeletal muscle development in mice, pigs, sheep, and cattle. However, to date, only a small number of miRNAs have been reported in the muscle development of goats. In this report, the longissimus dorsi transcripts of one- and ten-month-old goats were analyzed by sequencing RNAs and miRNAs. The results showed that the ten-month-old Longlin goats had 327 up- and 419 down-regulated differentially expressed genes (DEGs) compared with the one-month-old. In addition, 20 co-up-regulated and 55 co-down-regulated miRNAs involved in the muscle fiber hypertrophy of goats were identified in ten-month-old Longlin and Nubian goats compared with one-month-old. Five miRNA-mRNA pairs (chi-let-7b-3p-MIRLET7A, chi-miR193b-3p-MMP14, chi-miR-355-5p-DGAT2, novel_128-LOC102178119, novel_140-SOD3) involved in the goat skeletal muscle development were identified by miRNA-mRNA negative correlation network analysis. Our results provided new insight into the functional roles of goat muscle-associated miRNAs, allowing a deeper understanding of the transformation of miRNA roles during mammalian muscle development.


Subject(s)
MicroRNAs , Swine , Animals , Cattle , Mice , Sheep/genetics , MicroRNAs/genetics , Gene Expression Profiling , RNA, Messenger/genetics , Goats/genetics , Muscle Fibers, Skeletal/metabolism , Hypertrophy
7.
Int Immunopharmacol ; 117: 109888, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36827918

ABSTRACT

Nucleotides (NTs) play a pivotal role in the growth and development of the intestine. This study aimed to evaluate the effects of nucleotides supplementation on the intestinal barrier function, immune responses and microbiota in 3-day-old weaned piglets. Ninety-six piglets weaned at 3-days after birth were randomly assigned to 2 treatments (6 replicates/treatment, 8 piglets/replicate) according to the average body weight. The dietary treatments consisted of the control (CON; fed a basal artificial milk) and nucleotides groups (NT; fed a basal artificial milk with 0.035 % nucleotides, the contents of CMP, UMP, AMP, GMP, and IMP were 1:1:1:1:1, respectively). Diarrhea rates were recorded, and blood and intestinal samples were collected on day 35 of the piglets. The current study showed that NTs supplementation tended to decrease the diarrhea rate of weaned piglets (P < 0.10). NTs increased villus height and the villus height-to-crypt depth (V/C) ratio in the ileum (P < 0.05). Dietary NTs up-regulated protein expression of ZO-1 in ileal mucosa (P < 0.05), and the protein expression of Occludin tended to increase. Furthermore, NTs up-regulated the mRNA expression of Mucin (MUC)2, while the mRNA expression of MUC4 was down-regulated in the ileal mucosa (P < 0.05). Besides, supplementation with NTs increased the ileal mucosa genes expression of IL-21, INF-γ, IL-10, IL-4, IL-6 and TNF-α (P < 0.05). Furthermore, dietary NTs increased the protein expression of NF-κB, IL-6 and TNF-α (P < 0.05), and the proteins expression of Occludin and p-NF-κB tended to be up-regulated in the ileal mucosa (P < 0.10). Furthermore, NTs supplementation increased short chain fatty acid in the colonic (P < 0.05). And NTs supplementation reduced the Firmicutes/Bacteroidota ratio in the colon, at the genus level, NTs enriched the relative abundance of Prevotella, Faecalibacterium and Olsenella (P < 0.05). These data indicate that NTs could increase the villus height, increase the V/C, regulate the expression of tight junction protein and mucin, improve the intestinal barrier of piglets, regulate the secretion of cytokines, improve the biological immunity, increase the abundance of beneficial bacteria, and thus reduce the diarrhea of piglets.


Subject(s)
Dietary Supplements , Microbiota , Animals , Diarrhea/metabolism , Dietary Supplements/analysis , Immunity , Interleukin-6/metabolism , Intestinal Mucosa , Mucins/metabolism , NF-kappa B/metabolism , Nucleotides/metabolism , Occludin/genetics , Occludin/metabolism , RNA, Messenger/metabolism , Swine , Tumor Necrosis Factor-alpha/metabolism , Weaning
8.
Front Bioeng Biotechnol ; 10: 1080576, 2022.
Article in English | MEDLINE | ID: mdl-36524052

ABSTRACT

The limitations of conventional pesticides have raised the demand for innovative and sustainable solutions for plant protection. RNA Interference (RNAi) triggered by dsRNA has evolved as a promising strategy to control insects in a species-specific manner. In this context, we review the methods for mass production of dsRNA, the approaches of exogenous application of dsRNA in the field, and the fate of dsRNA after application. Additionally, we describe the opportunities and challenges of using nanoparticles as dsRNA carriers to control insects. Furthermore, we provide future directions to improve pest management efficiency by utilizing the synergistic effects of multiple target genes. Meanwhile, the establishment of a standardized framework for assessment and regulatory consensus is critical to the commercialization of RNA pesticides.

9.
Foods ; 11(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36076875

ABSTRACT

Resveratrol (RES) has a wide range of biological and pharmacological activities with various health benefits for humans as a food additive. In animal production, RES has been considered a potential functional feed additive for producing high-quality pork. Long noncoding RNAs (lncRNAs) have emerged as essential regulators of fat metabolism, and phytochemicals can regulate fat metabolism through lncRNA. However, it is unclear whether RES can improve back-fat thickness by regulating lncRNA. In this study, we identified a novel lncRNA, which was named a long intergenic non-protein coding RNA, a regulator of fat metabolism (LincRNA-ROFM), from our previous lncRNA sequencing data. LincRNA-ROFM can inhibit adipocyte proliferation and differentiation. In-depth analyses showed that LincRNA-ROFM acts as a molecular sponge for miR-133b, and adiponectin (AdipoQ) is a direct target of miR-133b in porcine preadipocytes. In addition, the expression of LincRNA-ROFM was positively correlated with AdipoQ. RES can promote the expression of LincRNA-ROFM by PPARα and C/EBPα. Altogether, our research showed that LincRNA-ROFM acts as a ceRNA to sequester miR-133b and is upregulated by RES, leading to heightened AdipoQ expression, and thus decreased adipocyte proliferation and differentiation, which reduces back-fat thickness of pigs. Taken together, the RES/LincRNA-ROFM/miR-133b/AdipoQ regulatory network preliminarily explains the mechanism of action of RES in inhibiting fat deposition, which provides new insight into the downstream mechanism of RES inhibition of fat deposits by regulating the lncRNA.

10.
Front Endocrinol (Lausanne) ; 13: 962775, 2022.
Article in English | MEDLINE | ID: mdl-35992123

ABSTRACT

Research has shown that dendrobium officinale polysaccharide (DOP) can promote follicular development and inhibit the apoptosis of ovarian granular cells in PCOS rats. However, DOP cannot be absorbed directly by the stomach and small intestine but is degraded into short-chain fatty acids by gut microbiota in the large intestine and regulates the composition of gut microbiota. How DOP improved ovarian function in PCOS rats through the blood-brain barrier is unclear. In this study, we generated letrozole-induced PCOS rat models and studied the therapeutic effect and mechanism of DOP. 16S rRNA amplicon sequencing analysis, GC-MS short-chain fatty acid detection, and Gene Expression Omnibus database searching were conducted to screen the significantly changed pathways, and a series of experiments, such as enzyme-linked immunosorbent assay, RT-qPCR, Western blot, and immunohistochemistry, were performed. We found that DOP treatment could improve ovarian morphology and endocrine disorders, restore the normal estrus cycle, increase gut microbiota α diversity, and alter ß diversity and enrichment of butyrate-producing bacterium in PCOS rats. In addition, compared with PCOS rats, those treated with DOP exhibited higher butyrate and polypeptide YY levels, possibly due to the regulation of G protein-coupled receptor 41 expression. These results indicated that DOP relieved the symptoms of PCOS rats which may be related to the mechanism of butyrate dependent gut-brain-ovary axis protection.


Subject(s)
Dendrobium , Polycystic Ovary Syndrome , Animals , Brain/metabolism , Butyrates/pharmacology , Butyrates/therapeutic use , Dendrobium/chemistry , Dendrobium/metabolism , Fatty Acids, Volatile , Female , Humans , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , RNA, Ribosomal, 16S , Rats
11.
Front Microbiol ; 13: 877297, 2022.
Article in English | MEDLINE | ID: mdl-35722272

ABSTRACT

This study aimed to investigate responses of the Lactobacillus reuteri or an antibiotic on cecal microbiota and intestinal barrier function in different stages of pigs. A total of 144 weaned pigs (Duroc × Landrace × Yorkshire, 21 days of age) were randomly assigned to the control group (CON, fed with a basal diet), the antibiotic group (AO, fed with basal diet plus 100 mg/kg olaquindox and 75 mg/kg aureomycin), and the L. reuteri group (LR, fed with the basal diet + 5 × 1010 CFU/kg L. reuteri LR1) throughout the 164-d experiment. A total of 45 cecal content samples (5 samples per group) from different periods (14th, 42th, and 164th days) were collected for 16S rRNA gene amplification. The results revealed that although LR and AO did not change the diversity of cecal microbiota in pigs, the abundance of some bacteria at the genus level was changed with age. The proportion of Lactobacillus was increased by LR in early life, whereas it was decreased by AO compared with the control group. The relative abundance of Ruminococcaceae was increased along with age. In addition, the gas chromatography results showed that age, not AO or LR, has significant effects on the concentrations of SCFAs in the cecum of pigs (P < 0.05). However, the mRNA expression of tight junction proteins zonula occluden-1 (ZO-1) and occludin were increased by AO in the cecum of pigs on day 14, while LR increased the mRNA expression of intestinal barrier-related proteins ZO-1, occludin, mucin-1, mucin-2, PG1-5, and pBD2 in the cecum of pigs on days 14 and 164 (P < 0.05). In conclusion, LR and AO have different effects on the intestinal barrier function of the cecum, and neither LR nor AO damaged the intestinal barrier function of pig cecum. In addition, LR and AO have little effects on cecal microflora in different stages of the pigs. The microflora and their metabolite SCFAs were significantly changed along with age. These findings provide important information to understand the homeostasis of the cecum of pigs after antibiotic or probiotic treatment.

12.
J Appl Microbiol ; 132(6): 4466-4475, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35338545

ABSTRACT

AIMS: Our study aimed to evaluate the effects of different dosages of sodium butyrate and niacin on the growth performance, faecal Vitamin B and microbiota in weaned piglets. METHODS AND RESULTS: Seventy-two weaned piglets (Duroc × Landrace × Yorkshire, age of 21 days) were randomly assigned to one of six treatments (12 pigs/treatment); the control (CT) group was administered a basal diet. The groups in which concentration ratios of sodium butyrate to niacin were 100: 1, 100: 2, 100: 4, 100: 8 and 100: 16 (BN1, BN2, BN4, BN8 and BN16) were administered a basal diet supplemented with 2000 mg kg-1 sodium butyrate and 20, 40, 80, 160 or 320 mg·kg-1 niacin. After 14-day treatment, the samples were collected. The results showed that feed conversion rate (FCR) was reduced and average daily gain (ADG) was increased in BN2 (p < 0.05). The diarrhoea index of pigs decreased with the low supplement. Additionally, compared with the CT group, other groups significantly increased (p < 0.05) the abundance of Firmicutes (BN4, phylum), Lactobacillaceae (BN8, family), Megasphaera (BN8, genus) and Lactobacillus (BN8, genus). Furthermore, the sodium butyrate and niacin supplementation influence Vitamin B1, Vitamin B2, pyridoxine, niacin, nicotinamide and Vitamin B12 (p < 0.05). Correlation analysis of the association of micro-organisms with Vitamin B indicated that changes of Vitamin B metabolism have a potential correlation with alterations of faecal microbiota in weaned piglets. CONCLUSIONS: The results indicated that adding sodium butyrate and niacin in the diet could promote the performance and improve the faecal microbiota and Vitamin B metabolism in weaned piglets. SIGNIFICANCE AND IMPACT OF THE STUDY: Our study might provide clues to the research of correlations between faecal bacteria and faecal Vitamin B, and these findings will contribute to the direction of future research in weaned piglets.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Niacin , Animal Feed/analysis , Animals , Butyric Acid/pharmacology , Dietary Supplements/analysis , Niacin/pharmacology , Swine , Vitamins/analysis , Weaning
13.
Foods ; 11(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35206074

ABSTRACT

This study investigated the effects of resveratrol (RES) supplementation on the growth performance, carcass and meat quality, blood lipid levels and ruminal bacterial microbiota of fattening goats. A total of forty castrated Nubian goats (28.25 ± 0.26 kg body weight) were randomly divided into four groups and provided with diets containing different levels of RES (0, 150, 300 and 600 mg/kg) for 120 d. The results showed that RES increased redness and intramuscular fat content, whilst reducing shear force in the longissimus dorsi muscle of goats (p < 0.05). In addition, the final weight, average daily gain, hot carcass weight, net meat weight, carcass lean percentage and eye muscle area of goats were significantly increased in the 150 mg/kg RES group compared with the other three groups, while those in the 600 mg/kg RES group significantly decreased (p < 0.05). RES significantly decreased serum triacylglycerol and LDL-C contents (p < 0.05), and increased HDL-C content and the HDL-C/TC ratio (p < 0.05). Supplementation with 150 mg/kg RES also increased the proportion of Acetitomaculum and Moryella, genera comprising short-chain fatty acid-producing bacteria. The present study indicated that an appropriate supplemental level of RES could improve the growth performance, neat percentage, meat quality, ruminal microbiota and serum lipid levels of fattening goats.

14.
Curr Microbiol ; 79(2): 66, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35059843

ABSTRACT

Plant growth-promoting (PGP) bacteria are an environmental-friendly alternative to chemical fertilizers for promoting plant development. We isolated and characterized a PGP endophyte, YSD J2, from the leaves of Cyperus esculentus L. var. sativus. Specific PGP characteristics of this strain, such as phosphate solubilization ability, potassium-dissolving ability, siderophore and indole-3-acetic acid (IAA) production, and salt tolerance, were determined in vitro. In addition, positive mutants were screened using the atmospheric and room-temperature plasma (ARTP) technology, with IAA level and organic phosphorus solubility as indices. Furthermore, the effect of the positive mutant on biomass production and antioxidant abilities of greengrocery seedling was evaluated and the genome was mined to explore the underlying mechanisms. The strain YSD J2 showed a good performance of PGP characteristics, such as the production of indole acetic acid and siderophores, solubilization ability of phosphate, and potassium-dissolving ability. It was recognized through 16S rRNA sequencing together with morphological and physiological tests and confirmed as Pantoea sp. The strain exposed to a mutation time of 125 s by ARTP had the highest IAA and organic phosphate (lecithin) concentrations of 10.34 mg/L and 16.52 mg/L, 42.06% and 34.15% higher than those of the initial strain. Inoculation of mutant strain YSD J2 significantly increased plant growth attributes and the activities of peroxidase and superoxide dismutase, respectively, but decreased the content of malondialdehyde significantly compared with the control. Furthermore, genome annotation and functional analysis were performed through whole-genome sequencing and PGP-related genes were identified. Our results indicated that the YSD J2 with PGP characteristics is a potential candidate for the development of biofertilizers.


Subject(s)
Cyperus , Pantoea , Pantoea/genetics , Plant Development , Plant Leaves , RNA, Ribosomal, 16S/genetics
15.
Arch Anim Breed ; 64(2): 375-386, 2021.
Article in English | MEDLINE | ID: mdl-34584939

ABSTRACT

Litter size is an important component trait of doe reproduction. By improving it, production efficiency and economic benefits can be significantly provided. Genetic marker-assisted selection (MAS) based on proven molecular indicators could enhance the efficacy of goat selection, as well as litter size trait. Many molecular markers have been identified that they can be used to improve litter size in different goat breeds. However, the presence and value of these markers vary among goat breeds. In the present study, we used the reported loci on other breeds of goat as candidate loci to detect whether these loci appear in this Nubian goat population; then we proceed to genotype and detect surrounding loci (50 bp) by multiplex PCR and sequencing technology. As a result, 69 mutations (59 SNPs and 10 indels) were screened out from 23 candidate genes in Nubian goat population, 12 loci were significantly associated with the litter size of first-parity individuals; 5 loci were significantly associated with the litter size of second-parity individuals; 3 loci were significantly associated with the litter size of third-parity individuals. In addition, five loci were significantly associated with the average litter size. The additive effect value of KITLG: g.18047318 G > A in first parity, KITLG: g.18152042G > A in third parity, KISS-1: g.1341674 C > G in first parity, and GHR: g.32134187G > A in second parity exceed more than 0.40, and the preponderant alleles are G, C, A and G, respectively. Further, linkage disequilibrium analysis of 21 mutation loci shows that 3 haplotype blocks are formed, and the litter size of combination type AACC in KISS-1 gene and AAGG in KITLG gene are significantly lower than that of other combinations genotype in first parity ( P < 0.05 ). These findings can provide effective candidate DNA markers for selecting superior individuals in Nubian goat breeding.

16.
Trop Anim Health Prod ; 53(2): 259, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33852074

ABSTRACT

The aim of this study was to identify differentially expressed long non-coding RNAs (lncRNAs) molecules and predict their target genes related to muscle development and lipid metabolism in longissimus dorsi (LD) muscles of Bama Xiang pigs under constant heat stress. Ten male Bama Xiang pigs with an average initial body weight of 14 kg were randomly divided into control group (22°C) and heat stress (35 °C) group. The experiment lasted for 28 days. All the pigs were slaughtered at the end of the experiment, and LD muscles were collected for muscle quality analysis and transcriptome sequencing. Heat stress reduced meat quality of Bama Xiang pigs. lncRNAs in LD were identified systematically by deep RNA sequencing between the two groups. The results showed that 365 lncRNAs from the LD were identified, including 128 intergenic lncRNAs, 82 intronic lncRNAs, and 155 anti-sense lncRNAs. The differences lie in transcript of length, number of exons and wider size distribution, and expression level per KB fragment in three subtypes of lncRNAs. The three types of transposable elements coverage, including Line/L1, SINE/tRNA, and LTR/ERVL-MaLR, are the highest in mRNA and the three subtypes of lncRNAs in pigs. lncRNAs and mRNAs were different in comparison of features. The results predicted the target genes of the significant differentially expressed lncRNAs related to muscle development and lipid metabolism. This is the first study to expand the knowledge about muscle-related lncRNAs biology in Bama Xiang pigs under heat stress and will contribute to the development of alleviating the adverse effects of heat stress on pork quality targeting lncRNAs.


Subject(s)
RNA, Long Noncoding , Animals , Heat-Shock Response , Male , Muscle Development , Muscle, Skeletal , Sequence Analysis, RNA/veterinary , Swine/genetics
17.
Cell Stress Chaperones ; 26(3): 563-574, 2021 05.
Article in English | MEDLINE | ID: mdl-33743152

ABSTRACT

Heat stress (HS) results in health problems in animals. This study was conducted to investigate the effect and the underlying mechanism of HS on the proliferation and differentiation process of 3T3-L1 preadipocytes. 3T3-L1 preadipocytes were treated at 37 °C or 41.5 °C. HS up-regulated the mRNA and protein expression level of heat shock protein 70 (HSP70). Furthermore, the proliferation of 3T3-L1 preadipocytes were significantly inhibited after HS treatment for 2 days. A large number of accumulated lipid droplets were observed under the microscope after HS treatment for 8 days. Notably, the result of oil red O staining showed that the number of lipid droplets increased significantly and the differentiation ability of the cells was enhanced after HS. Moreover, after 2 and 8 d of differentiation, HS increased the transcription levels of fat synthesis genes including peroxisome proliferators activated receptor γ (PPARγ), fatty acid binding protein 2 (AP2), fatty acid synthase (FAS) and CCAAT enhancer binding protein α (CEBPα) genes, while decreasing the transcription levels of lipid decomposition genes including ATGL and HSL genes. In addition, HS reduced the expression of AMPK and PGC-1α, as well as the dephosphorylation of AMPK. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) can eliminate HS induced lipogenesis by activating AMPK. These results indicated that HS inhibited the proliferation of 3T3-L1 preadipocytes and promoted lipid accumulation by inhibiting the AMPK-PGC-1α signaling pathway in 3T3-L1 preadipocytes. This work lays a theoretical foundation for improving the effect of HS on meat quality of livestock and provides a new direction for the prevention of obesity caused by HS.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adipocytes/metabolism , Adipogenesis/physiology , Hot Temperature , Signal Transduction/physiology , 3T3-L1 Cells , Adipocytes/drug effects , Adipogenesis/drug effects , Adipogenesis/genetics , Animals , Mice , PPAR gamma/genetics , PPAR gamma/metabolism
18.
Food Funct ; 10(6): 3334-3343, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31095141

ABSTRACT

This study was conducted to investigate the effect and underlying mechanism of Resveratrol (RES) in regulating skeletal muscle fiber-type switching. We found that RES had no effect on the body weight and food intake of Kunming mice (KM mice) that were orally administered with 400 mg kg-1 d-1 RES for 12 weeks. Notably, the RES administration significantly increased the expression of myosin heavy chain (MyHC) 1, MyHC2a, and MyHC2x in the extensor digitorum longus (EDL) and soleus (SOL) muscles. Furthermore, the muscle immunostaining of the results showed that the RES treatment led to the myofiber type transition from glycolytic to oxidative in muscles. The mRNA and protein levels of the adiponectin receptor (AdipoR), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in EDL and SOL were drastically increased after RES treatment. Moreover, the plasma Adiponectin (AdipoQ) protein levels were higher in the RES-treated mice compared to the control mice. Moreover, the in vitro results further demonstrated that the 20 µM RES treatment increased the expression of AdipoR1, AdipoR2, AMPK, PGC-1α and MyHC1, but decreased the expression of MyHC2b in C2C12 myoblasts. Furthermore, mechanistic studies revealed that silencing the AdiopR1, not the AdiopR2, abolished the effect of RES on the expression of AMPK and PGC-1α in the C2C12 cells. These results indicated that RES could regulate skeletal fiber switching through the AdiopR1-AMPK-PGC-1α pathway. This work may provide a new strategy for enhancing endurance and relieving muscle diseases caused by oxidative muscle fiber deficiency.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Muscle Fibers, Skeletal/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Receptors, Adiponectin/metabolism , Resveratrol/administration & dosage , AMP-Activated Protein Kinases/genetics , Adiponectin/blood , Animals , Male , Mice , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/enzymology , Myoblasts/drug effects , Myoblasts/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Receptors, Adiponectin/genetics , Signal Transduction/drug effects
19.
Front Physiol ; 9: 992, 2018.
Article in English | MEDLINE | ID: mdl-30090072

ABSTRACT

Carboxylesterase (CarE) is an important class of detoxification enzymes involved in insecticide resistance. However, the molecular mechanism of CarE-mediated insecticide resistance in Rhopalosiphum padi, a problematic agricultural pest, remains largely unknown. In the present study, an isoprocarb-resistant (IS-R) strain and a cyhalothrin-resistant (CY-R) strain were successively selected from a susceptible (SS) strain of R. padi. The enzyme activity indicated that enhanced carboxylesterase activity contributes to isoprocarb and cyhalothrin resistance. The expression levels of putative CarE genes were examined and compared among IS-R, CY-R, and SS strains, and only the R. padi carboxylesterase gene (RpCarE) was significantly over expressed in both the IS-R and CY-R strains compared to the SS strain. The coding region of the RpCarE gene was cloned and expressed in Escherichia coli. The purified RpCarE protein was able to catalyze the model substrate, α-naphtyl acetate (Kcat = 5.50 s-1; Km = 42.98 µM). HPLC assay showed that the recombinant protein had hydrolase activity against isoprocarb and cyhalothrin. The modeling and docking analyses consistently indicated these two insecticide molecules fit snugly into the catalytic pocket of RpCarE. Taken together, these findings suggest that RpCarE plays an important role in metabolic resistance to carbamates and pyrethroids in R. padi.

20.
Pest Manag Sci ; 74(6): 1457-1465, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29266699

ABSTRACT

BACKGROUND: Rhopalosiphum padi is a destructive insect pest of wheat worldwide. Studies have shown that R. padi has developed resistance to different insecticides, including imidacloprid. We studied the mechanisms conferring resistance to imidacloprid at the biochemical and molecular levels. RESULTS: An R. padi imidacloprid-resistant (IM-R) strain and a susceptible (SS) strain were established. Fitness analysis using life-tables showed that the IM-R strain had obvious disadvantages in several parameters, indicating reduced fitness. Profiles of cross-resistance of IM-R and SS to seven insecticides were detected. Both synergistic and enzyme activity data suggested that P450 plays a role in resistance. Furthermore, the mRNA expression levels of cytochrome P450 (CYP) genes CYP6CY3-1 and CYP6CY3-2 were significantly increased in the IM-R strain. No target-site mutation within the nicotinic acetylcholine receptor (nAChR) subunits was detected in the IM-R strain. Interestingly, the expression levels of the nAChR α1, α2, α3, α7-2, and ß1 subunit genes were significantly decreased, suggesting that down-regulation of these subunits may be involved in resistance. CONCLUSION: Multiple mechanisms confer imidacloprid resistance in R. padi. © 2017 Society of Chemical Industry.


Subject(s)
Aphids/drug effects , Aphids/physiology , Gene Expression/drug effects , Genetic Fitness/drug effects , Insecticide Resistance/genetics , Insecticides/pharmacology , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology , Animals , Aphids/genetics , Aphids/growth & development , Life History Traits , Mutation , Nymph/drug effects , Nymph/genetics , Nymph/growth & development , Nymph/physiology , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...