Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38739503

ABSTRACT

Hepatocellular carcinoma (HCC), the most common type of liver cancer, poses significant challenges in detection and diagnosis. Medical imaging, especially computed tomography (CT), is pivotal in non-invasively identifying this disease, requiring substantial expertise for interpretation. This research introduces an innovative strategy that integrates two-dimensional (2D) and three-dimensional (3D) deep learning models within a federated learning (FL) framework for precise segmentation of liver and tumor regions in medical images. The study utilized 131 CT scans from the Liver Tumor Segmentation (LiTS) challenge and demonstrated the superior efficiency and accuracy of the proposed Hybrid-ResUNet model with a Dice score of 0.9433 and an AUC of 0.9965 compared to ResNet and EfficientNet models. This FL approach is beneficial for conducting large-scale clinical trials while safeguarding patient privacy across healthcare settings. It facilitates active engagement in problem-solving, data collection, model development, and refinement. The study also addresses data imbalances in the FL context, showing resilience and highlighting local models' robust performance. Future research will concentrate on refining federated learning algorithms and their incorporation into the continuous implementation and deployment (CI/CD) processes in AI system operations, emphasizing the dynamic involvement of clients. We recommend a collaborative human-AI endeavor to enhance feature extraction and knowledge transfer. These improvements are intended to boost equitable and efficient data collaboration across various sectors in practical scenarios, offering a crucial guide for forthcoming research in medical AI.

2.
Comput Methods Programs Biomed ; 221: 106854, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35567864

ABSTRACT

This paper proposes an encoder-decoder architecture for kidney segmentation. A hyperparameter optimization process is implemented, including the development of a model architecture, selecting a windowing method and a loss function, and data augmentation. The model consists of EfficientNet-B5 as the encoder and a feature pyramid network as the decoder that yields the best performance with a Dice score of 0.969 on the 2019 Kidney and Kidney Tumor Segmentation Challenge dataset. The proposed model is tested with different voxel spacing, anatomical planes, and kidney and tumor volumes. Moreover, case studies are conducted to analyze segmentation outliers. Finally, five-fold cross-validation and the 3D-IRCAD-01 dataset are used to evaluate the developed model in terms of the following evaluation metrics: the Dice score, recall, precision, and the Intersection over Union score. A new development and application of artificial intelligence algorithms to solve image analysis and interpretation will be demonstrated in this paper. Overall, our experiment results show that the proposed kidney segmentation solutions in CT images can be significantly applied to clinical needs to assist surgeons in surgical planning. It enables the calculation of the total kidney volume for kidney function estimation in ADPKD and supports radiologists or doctors in disease diagnoses and disease progression.


Subject(s)
Deep Learning , Artificial Intelligence , Image Processing, Computer-Assisted/methods , Kidney/diagnostic imaging , Tomography, X-Ray Computed/methods
3.
Sensors (Basel) ; 22(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35632136

ABSTRACT

Coronavirus (COVID-19) has created an unprecedented global crisis because of its detrimental effect on the global economy and health. COVID-19 cases have been rapidly increasing, with no sign of stopping. As a result, test kits and accurate detection models are in short supply. Early identification of COVID-19 patients will help decrease the infection rate. Thus, developing an automatic algorithm that enables the early detection of COVID-19 is essential. Moreover, patient data are sensitive, and they must be protected to prevent malicious attackers from revealing information through model updates and reconstruction. In this study, we presented a higher privacy-preserving federated learning system for COVID-19 detection without sharing data among data owners. First, we constructed a federated learning system using chest X-ray images and symptom information. The purpose is to develop a decentralized model across multiple hospitals without sharing data. We found that adding the spatial pyramid pooling to a 2D convolutional neural network improves the accuracy of chest X-ray images. Second, we explored that the accuracy of federated learning for COVID-19 identification reduces significantly for non-independent and identically distributed (Non-IID) data. We then proposed a strategy to improve the model's accuracy on Non-IID data by increasing the total number of clients, parallelism (client-fraction), and computation per client. Finally, for our federated learning model, we applied a differential privacy stochastic gradient descent (DP-SGD) to improve the privacy of patient data. We also proposed a strategy to maintain the robustness of federated learning to ensure the security and accuracy of the model.


Subject(s)
COVID-19 , Privacy , COVID-19/diagnostic imaging , Humans , Neural Networks, Computer , Thorax , X-Rays
4.
Comput Methods Programs Biomed ; 221: 106861, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35588664

ABSTRACT

Previously, doctors interpreted computed tomography (CT) images based on their experience in diagnosing kidney diseases. However, with the rapid increase in CT images, such interpretations were required considerable time and effort, producing inconsistent results. Several novel neural network models were proposed to automatically identify kidney or tumor areas in CT images for solving this problem. In most of these models, only the neural network structure was modified to improve accuracy. However, data pre-processing was also a crucial step in improving the results. This study systematically discussed the necessary pre-processing methods before processing medical images in a neural network model. The experimental results were shown that the proposed pre-processing methods or models significantly improve the accuracy rate compared with the case without data pre-processing. Specifically, the dice score was improved from 0.9436 to 0.9648 for kidney segmentation and 0.7294 for all types of tumor detections. The performance was suitable for clinical applications with lower computational resources based on the proposed medical image processing methods and deep learning models. The cost efficiency and effectiveness were also achieved for automatic kidney volume calculation and tumor detection accurately.


Subject(s)
Deep Learning , Neoplasms , Humans , Image Processing, Computer-Assisted/methods , Kidney/diagnostic imaging , Tomography, X-Ray Computed/methods
5.
Sensors (Basel) ; 21(23)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34883961

ABSTRACT

Determining the price movement of stocks is a challenging problem to solve because of factors such as industry performance, economic variables, investor sentiment, company news, company performance, and social media sentiment. People can predict the price movement of stocks by applying machine learning algorithms on information contained in historical data, stock candlestick-chart data, and social-media data. However, it is hard to predict stock movement based on a single classifier. In this study, we proposed a multichannel collaborative network by incorporating candlestick-chart and social-media data for stock trend predictions. We first extracted the social media sentiment features using the Natural Language Toolkit and sentiment analysis data from Twitter. We then transformed the stock's historical time series data into a candlestick chart to elucidate patterns in the stock's movement. Finally, we integrated the stock's sentiment features and its candlestick chart to predict the stock price movement over 4-, 6-, 8-, and 10-day time periods. Our collaborative network consisted of two branches: the first branch contained a one-dimensional convolutional neural network (CNN) performing sentiment classification. The second branch included a two-dimensional (2D) CNN performing image classifications based on 2D candlestick chart data. We evaluated our model for five high-demand stocks (Apple, Tesla, IBM, Amazon, and Google) and determined that our collaborative network achieved promising results and compared favorably against single-network models using either sentiment data or candlestick charts alone. The proposed method obtained the most favorable performance with 75.38% accuracy for Apple stock. We also found that the stock price prediction achieved more favorable performance over longer periods of time compared with shorter periods of time.


Subject(s)
Investments , Sentiment Analysis , Algorithms , Humans , Models, Economic , Neural Networks, Computer
6.
Sensors (Basel) ; 21(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34770428

ABSTRACT

As wireless sensor networks have become more prevalent, data from sensors in daily life are constantly being recorded. Due to cost or energy consumption considerations, optimization-based approaches are proposed to reduce deployed sensors and yield results within the error tolerance. The correlation-aware method is also designed in a mathematical model that combines theoretical and practical perspectives. The sensor deployment strategies, including XGBoost, Pearson correlation, and Lagrangian Relaxation (LR), are determined to minimize deployment costs while maintaining estimation errors below a given threshold. Moreover, the results significantly ensure the accuracy of the gathered information while minimizing the cost of deployment and maximizing the lifetime of the WSN. Furthermore, the proposed solution can be readily applied to sensor distribution problems in various fields.


Subject(s)
Computer Communication Networks , Wireless Technology , Models, Theoretical , Records
7.
Sensors (Basel) ; 21(5)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800232

ABSTRACT

A combined edge and core cloud computing environment is a novel solution in 5G network slices. The clients' high availability requirement is a challenge because it limits the possible admission control in front of the edge cloud. This work proposes an orchestrator with a mathematical programming model in a global viewpoint to solve resource management problems and satisfying the clients' high availability requirements. The proposed Lagrangian relaxation-based approach is adopted to solve the problems at a near-optimal level for increasing the system revenue. A promising and straightforward resource management approach and several experimental cases are used to evaluate the efficiency and effectiveness. Preliminary results are presented as performance evaluations to verify the proposed approach's suitability for edge and core cloud computing environments. The proposed orchestrator significantly enables the network slicing services and efficiently enhances the clients' satisfaction of high availability.

8.
Sensors (Basel) ; 22(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35009663

ABSTRACT

Network slicing is a promising technology that network operators can deploy the services by slices with heterogeneous quality of service (QoS) requirements. However, an orchestrator for network operation with efficient slice resource provisioning algorithms is essential. This work stands on Internet service provider (ISP) to design an orchestrator analyzing the critical influencing factors, namely access control, scheduling, and resource migration, to systematically evolve a sustainable network. The scalability and flexibility of resources are jointly considered. The resource management problem is formulated as a mixed-integer programming (MIP) problem. A solution approach based on Lagrangian relaxation (LR) is proposed for the orchestrator to make decisions to satisfy the high QoS applications. It can investigate the resources required for access control within a cost-efficient resource pool and consider allocating or migrating resources efficiently in each network slice. For high system utilization, the proposed mechanisms are modeled in a pay-as-you-go manner. Furthermore, the experiment results show that the proposed strategies perform the near-optimal system revenue to meet the QoS requirement by making decisions.

SELECTION OF CITATIONS
SEARCH DETAIL
...