Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Cell Chem Biol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39025070

ABSTRACT

Morphinan antagonists, which block opioid effects at mu-opioid receptors, have been studied for their analgesic potential. Previous studies have suggested that these antagonists elicit analgesia with fewer adverse effects in the presence of the mutant mu-opioid receptor (MOR; S196A). However, introducing a mutant receptor for medical applications represents significant challenges. We hypothesize that binding a chemical compound to the MOR may elicit a comparable effect to the S196A mutation. Through high-throughput screening and structure-activity relationship studies, we identified a modulator, 4-(2-(4-fluorophenyl)-4-oxothiazolidin-3-yl)-3-methylbenzoic acid (BPRMU191), which confers agonistic properties to small-molecule morphinan antagonists, which induce G protein-dependent MOR activation. Co-application of BPRMU191 and morphinan antagonists resulted in MOR-dependent analgesia with diminished side effects, including gastrointestinal dysfunction, antinociceptive tolerance, and physical and psychological dependence. Combining BPRMU191 and morphinan antagonists could serve as a potential therapeutic strategy for severe pain with reduced adverse effects and provide an avenue for studying G protein-coupled receptor modulation.

2.
Article in English | MEDLINE | ID: mdl-38871614

ABSTRACT

For 29 parent strains, recognized by pulsed-field gel electrophoresis, the MICs multiplied significantly in the ciprofloxacin group than levofloxacin group, following the first and third induction cycle. Ser83Arg in GyrA was the most common site of mutations. No mutation in ParC nor ParE was identified in the selected mutants.

3.
Int J Mol Sci ; 25(4)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38396892

ABSTRACT

Fluoroquinolones are potentially active against Elizabethkingia anophelis. Rapidly increased minimum inhibitory concentrations (MICs) and emerging point mutations in the quinolone resistance-determining regions (QRDRs) following exposure to fluoroquinolones have been reported in E. anophelis. We aimed to investigate point mutations in QRDRs through exposure to levofloxacin (1 × MIC) combinations with different concentrations (0.5× and 1 × MIC) of minocycline, rifampin, cefoperazone/sulbactam, or sulfamethoxazole/trimethoprim in comparison with exposure to levofloxacin alone. Of the four E. anophelis isolates that were clinically collected, lower MICs of levofloxacin were disclosed in cycle 2 and 3 of induction and selection in all levofloxacin combination groups other than levofloxacin alone (all p = 0.04). Overall, no mutations were discovered in parC and parE throughout the multicycles inducted by levofloxacin and all its combinations. Regarding the vastly increased MICs, the second point mutations in gyrA and/or gyrB in one isolate (strain no. 1) occurred in cycle 2 following exposure to levofloxacin plus 0.5 × MIC minocycline, but they were delayed appearing in cycle 5 following exposure to levofloxacin plus 1 × MIC minocycline. Similarly, the second point mutation in gyrA and/or gyrB occurred in another isolate (strain no. 3) in cycle 4 following exposure to levofloxacin plus 0.5 × MIC sulfamethoxazole/trimethoprim, but no mutation following exposure to levofloxacin plus 1 × MIC sulfamethoxazole/trimethoprim was disclosed. In conclusion, the rapid selection of E. anophelis mutants with high MICs after levofloxacin exposure could be effectively delayed or postponed by antimicrobial combination with other in vitro active antibiotics.


Subject(s)
Flavobacteriaceae , Levofloxacin , Minocycline , Levofloxacin/pharmacology , Minocycline/pharmacology , DNA Gyrase/genetics , Anti-Bacterial Agents/pharmacology , Fluoroquinolones/pharmacology , Microbial Sensitivity Tests , Mutation , Sulfamethoxazole , Trimethoprim , Drug Resistance, Bacterial/genetics
4.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069334

ABSTRACT

Elizabethkingia anophelis has emerged as a critical human pathogen, and a number of isolated reports have described the successful treatment of Elizabethkingia infections with vancomycin, a drug that is typically used to target Gram-positive bacteria. This study employed in vitro broth microdilution checkerboard and time-kill assays, as well as in vivo zebrafish animal models to evaluate the individual and combination antimicrobial effects of vancomycin and rifampin against E. anophelis. The minimum inhibitory concentration ranges of vancomycin and rifampin against 167 isolates of E. anophelis were 16-256 mg/L and 0.06-128 mg/L, respectively. The checkerboard assay results revealed a synergistic effect between vancomycin and rifampin in 16.8% (28/167) of the isolates. Time-kill assays were implemented for 66 isolates, and the two-drug combination had a synergistic interaction in 57 (86.4%) isolates. In vivo zebrafish studies revealed that treatment with vancomycin monotherapy, rifampin monotherapy, or vancomycin-rifampin combination therapy yielded a higher survival rate than the control group treatment with 0.9% saline. The results of this study support the use of vancomycin to treat E. anophelis infections.


Subject(s)
Rifampin , Vancomycin , Animals , Humans , Vancomycin/pharmacology , Rifampin/pharmacology , Anti-Bacterial Agents/pharmacology , Zebrafish , Microbial Sensitivity Tests
5.
Int J Mol Sci ; 24(16)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37629190

ABSTRACT

Bacteria in the genus Elizabethkingia have emerged as a cause of life-threatening infections in humans. However, accurate species identification of these pathogens relies on molecular techniques. We aimed to evaluate the accuracy of 16S rRNA and complete RNA polymerase ß-subunit (rpoB) gene sequences in identifying Elizabethkingia species. A total of 173 Elizabethkingia strains with whole-genome sequences in GenBank were included. The 16S rRNA gene and rpoB gene sequences from the same Elizabethkingia strains were examined. Of the 41 E. meningoseptica strains, all exhibited >99.5% 16S rRNA similarity to its type strain. Only 83% of the 99 E. anophelis strains shared >99.5% 16S rRNA gene similarity with its type strain. All strains of E. meningoseptica and E. anophelis formed a cluster distinct from the other Elizabethkingia species in the 16S rRNA and rpoB gene phylogenetic trees. The polymorphisms of 16S rRNA gene sequences are not sufficient for constructing a phylogenetic tree to discriminate species in the E. miricola cluster (E. miricola, E. bruuniana, E. occulta, and E. ursingii). The complete rpoB gene phylogenetic tree clearly delineates all strains of Elizabethkingia species. The complete rpoB gene sequencing could be a useful complementary phylogenetic marker for the accurate identification of Elizabethkingia species.


Subject(s)
Flavobacteriaceae Infections , Humans , RNA, Ribosomal, 16S/genetics , Phylogeny , DNA-Directed RNA Polymerases/genetics , Databases, Nucleic Acid
6.
Life (Basel) ; 13(1)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36676186

ABSTRACT

(1) Background: Surgical resection for the removal of brain metastases often fails to prevent tumor recurrence within the surgical cavity; hence, researchers are divided as to the benefits of radiation treatment following surgical resection. This retrospective study assessed the effects of post-operative stereotactic radiosurgery (SRS) on local tumor control and overall survival. (2) Methods: This study examined the demographics, original tumor characteristics, and surgical outcomes of 97 patients who underwent Gamma Knife Radiosurgery (GKRS) treatment (103 brain metastases). Kaplan-Meier plots and Cox regression were used to correlate clinical features to tumor control and overall survival. (3) Results: The overall tumor control rate was 75.0% and overall 12-month survival was 89.6%. Tumor control rates in the radiation group versus the non-radiation group were as follows: 12 months (83.1% vs. 57.7%) and 24 months (66.1% vs. 50.5%). During the 2-year follow-up period after SRS, the intracranial response rate was higher in the post-craniotomy radiation group than in the non-radiation group (p = 0.027). Cox regression multivariate analysis determined that post-craniotomy irradiation of the surgical cavity is predictive of tumor control (p = 0.035). However, EGFR mutation was not predictive of overall survival or tumor control. (4) Conclusions: Irradiating the surgical cavity after surgery can enhance local tumor control; however, it does not have a significant effect on overall survival.

7.
Trop Med Infect Dis ; 7(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36548663

ABSTRACT

The identification of the key factors influencing dengue occurrence is critical for a successful response to the outbreak. It was interesting to consider possible differences in meteorological factors affecting dengue incidence during epidemic and non-epidemic periods. In this study, the overall correlation between weekly dengue incidence rates and meteorological variables were conducted in southern Taiwan (Tainan and Kaohsiung cities) from 2007 to 2017. The lagged-time Poisson regression analysis based on generalized estimating equation (GEE) was also performed. This study found that the best-fitting Poisson models with the smallest QICu values to characterize the relationships between dengue fever cases and meteorological factors in Tainan (QICu = −8.49 × 10−3) and Kaohsiung (−3116.30) for epidemic periods, respectively. During dengue epidemics, the maximum temperature with 2-month lag (ß = 0.8400, p < 0.001) and minimum temperature with 5-month lag (0.3832, p < 0.001). During non-epidemic periods, the minimum temperature with 3-month lag (0.1737, p < 0.001) and mean temperature with 2-month lag (2.6743, p < 0.001) had a positive effect on dengue incidence in Tainan and Kaohsiung, respectively.

8.
Microbiol Spectr ; 10(5): e0133822, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36036645

ABSTRACT

Accurate identification of Elizabethkingia species mostly requires the use of molecular techniques, and 16S rRNA gene sequencing is generally considered the method of choice. In this study, we evaluated the effect of intraspecific diversity among the multiple copies of the 16S rRNA gene on the accuracy of species identification in the genus Elizabethkingia. Sequences of 16S rRNA genes obtained from the 32 complete whole-genome sequences of Elizabethkingia deposited in GenBank and from 218 clinical isolates collected from 5 hospitals in Taiwan were analyzed. Four or five copies of 16S rRNA were identified in the Elizabethkingia species with complete genome sequences. The dissimilarity among the copies of the16S rRNA gene was <1% in all Elizabethkingia strains. E. meningoseptica demonstrated a significantly higher rate of nucleotide variations in the 16S rRNA than did E. anophelis (P = 0.011). Nucleotide alterations occurred more frequently in regions V2 and V6 than in other hypervariable regions (P < 0.001). E. meningoseptica, E. anophelis, and E. argenteiflava strains were clustered distinctly in the phylogenetic tree inferred from 16S rRNA genes, and the intragenomic variation of gene sequences had no profound effect on the classification of taxa. However, E. miricola, E. bruuniana, E. ursingii, and E. occulta were grouped closely in the phylogenetic analysis, and the variation among the multiple copies of the 16S rRNA in one E. ursingii strain affected species classification. Other marker genes may be required to supplement the species classification of closely related taxa in the genus Elizabethkingia. IMPORTANCE Incorrect identification of bacterial species would influence the epidemiology and clinical analysis of patients infected with Elizabethkingia. The results of the present study suggest that 16S rRNA gene sequencing should not be considered the gold standard for the accurate identification of Elizabethkingia species.


Subject(s)
Flavobacteriaceae Infections , Flavobacteriaceae , Humans , RNA, Ribosomal, 16S/genetics , Genes, rRNA , Flavobacteriaceae Infections/veterinary , Flavobacteriaceae Infections/epidemiology , Flavobacteriaceae Infections/genetics , Phylogeny , Flavobacteriaceae/genetics , Sequence Analysis, DNA , Nucleotides
9.
Antimicrob Agents Chemother ; 66(7): e0030122, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35708332

ABSTRACT

Fluoroquinolones are potentially effective against Elizabethkingia anophelis. We investigated the MIC, mutant prevention concentration (MPC), and target gene mutations of fluoroquinolones in E. anophelis. Eighty-five E. anophelis isolates were collected from five hospitals in Taiwan. The MIC and MPC of ciprofloxacin and levofloxacin were examined for all E. anophelis except 17 isolates, in which ciprofloxacin MPC could not be determined due to drug precipitation caused by overly high drug concentration. Mutations in the quinolone resistance-determining regions of DNA gyrase (GyrA and GyrB) and topoisomerase IV (ParC and ParE) in the clinical isolates and fluoroquinolone-selected mutants were examined. Overall, 23.5% and 71.8% of the isolates tested were susceptible to ciprofloxacin and levofloxacin, respectively. The MPC50 of ciprofloxacin was 128 mg/L, and the MPC50 of levofloxacin was 51.2 mg/L. The MPC50/MIC50 ratio for ciprofloxacin was 64, whereas that for levofloxacin was 25.6. The coefficient of determination between the MPC and MIC for ciprofloxacin and levofloxacin was 0.72 and 0.56, respectively, in the linear regression analysis. Preexisting mutations in GyrA (S83I, S83R, and D87Y) were identified in 18 clinical isolates, all of which were resistant to both ciprofloxacin and levofloxacin. Additional amino acid substitutions in GyrA were identified in all ciprofloxacin- and levofloxacin-selected mutants. Furthermore, GyrB alterations (D431N or D431H) were found in nine levofloxacin-treated isolates. Given that maintaining the serum concentrations of fluoroquinolones above MPCs is impossible under presently recommended doses, the selection of mutant E. anophelis strains seems inevitable.


Subject(s)
Fluoroquinolones , Levofloxacin , Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Drug Resistance, Bacterial/genetics , Flavobacteriaceae , Fluoroquinolones/pharmacology , Levofloxacin/pharmacology , Microbial Sensitivity Tests , Mutation/genetics
10.
Antibiotics (Basel) ; 10(3)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33801839

ABSTRACT

Elizabethkingia anophelis is a multidrug-resistant pathogen. This study evaluated the antimicrobial activity of minocycline, tigecycline, ciprofloxacin, and levofloxacin using in vitro time-kill assays and in vivo zebrafish animal models. The E. anophelis strain ED853-49 was arbitrarily selected from a bacterial collection which was concomitantly susceptible to minocycline, tigecycline, ciprofloxacin, and levofloxacin. The antibacterial activities of single agents at 0.5-4 × minimum inhibitory concentration (MIC) and dual-agent combinations at 2 × MIC using time-kill assays were investigated. The therapeutic effects of antibiotics in E. anophelis-infected zebrafish were examined. Both minocycline and tigecycline demonstrated bacteriostatic effects but no bactericidal effect. Minocycline at concentrations ≥2 × MIC and tigecycline at concentrations ≥3 × MIC exhibited a long-standing inhibitory effect for 48 h. Bactericidal effects were observed at ciprofloxacin and levofloxacin concentrations of ≥3 × MIC within 24 h of initial inoculation. Rapid regrowth of E. anophelis occurred after the initial killing phase when ciprofloxacin was used, regardless of the concentration. Levofloxacin treatment at the concentration of ≥2 × MIC consistently resulted in the long-lasting and sustainable inhibition of bacterial growth for 48 h. The addition of minocycline or tigecycline weakened the killing effect of fluoroquinolones during the first 10 h. The minocycline-ciprofloxacin or minocycline-levofloxacin combinations achieved the lowest colony-forming unit counts at 48 h. Zebrafish treated with minocycline or a combination of minocycline and levofloxacin had the highest survival rate (70%). The results of these in vitro and in vivo studies suggest that the combination of minocycline and levofloxacin is the most effective therapy approach for E. anophelis infection.

11.
Antibiotics (Basel) ; 10(4)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923659

ABSTRACT

Elizabethkingia anophelis has recently emerged as a cause of life-threatening infections. This study compared the results of antimicrobial susceptibility testing (AST) conducted for E. anophelis through different methods. E. anophelis isolates collected between January 2005 and June 2019 were examined for their susceptibility to 14 antimicrobial agents by using disk diffusion, gradient diffusion (Etest; bioMérieux S.A., Marcy l'Etoile, France), and agar dilution methods. The agar dilution method was the reference assay. According to the agar dilution method, the isolates exhibited the highest susceptibility to minocycline (100%), doxycycline (97.6%), rifampin (95.2%), and levofloxacin (78.6%). A very major error rate of >1.5% was observed for nine antibiotics tested using the disk diffusion method. The overall categorical agreement rate between the disk diffusion and agar dilution methods was 74.8%, and ceftazidime, minocycline, levofloxacin, and rifampin met the minimum requirements for discrepancy and agreement rates. The Etest method tended to produce lower log2 minimum inhibitory concentrations for the antibiotics, except for trimethoprim-sulfamethoxazole and rifampin; the method resulted in very major errors for nine antibiotics. The overall essential and categorical agreement rates between the Etest and agar dilution methods were 67.3% and 76.1%, respectively. The Etest method demonstrated acceptable discrepancy and agreement rates for ceftazidime, minocycline, doxycycline, levofloxacin, and rifampin. AST results obtained through the disk diffusion and Etest methods for multiple antibiotics differed significantly from those obtained using the agar dilution method. These two assays should not be a routine alternative for AST for E. anophelis.

12.
Pain ; 161(6): 1177-1190, 2020 06.
Article in English | MEDLINE | ID: mdl-32040076

ABSTRACT

Morphine is a strong painkiller acting through mu-opioid receptor (MOR). Full-length 7-transmembrane (TM) variants of MOR share similar amino acid sequences of TM domains in rodents and humans; however, interspecies differences in N- and C-terminal amino acid sequences of MOR splice variants dramatically affect the downstream signaling. Thus, it is essential to develop a mouse model that expresses human MOR splice variants for opioid pharmacological studies. We generated 2 lines of fully humanized MOR mice (hMOR; mMOR mice), line #1 and #2. The novel murine model having human OPRM1 genes and human-specific variants was examined by reverse-transcription polymerase chain reaction and the MinION nanopore sequencing. The differences in the regional distribution of MOR between wild-type and humanized MOR mice brains were detected by RNAscope and radioligand binding assay. hMOR; mMOR mice were characterized in vivo using a tail-flick, charcoal meal, open field, tail suspension, naloxone precipitation tests, and rectal temperature measurement. The data indicated that wild-type and humanized MOR mice exhibited different pharmacology of morphine, including antinociception, tolerance, sedation, and withdrawal syndromes, suggesting the presence of species difference between mouse and human MORs. Therefore, hMOR; mMOR mice could serve as a novel mouse model for pharmacogenetic studies of opioids.


Subject(s)
Hypothermia , Morphine , Receptors, Opioid, mu , Amino Acid Sequence , Analgesics, Opioid/pharmacology , Animals , Drug Tolerance , Humans , Mice , Mice, Transgenic , Morphine/pharmacology , Receptors, Opioid, mu/genetics
13.
Sci Rep ; 9(1): 19167, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31844108

ABSTRACT

Bacteria of the genus Elizabethkingia are emerging infectious agents that can cause infection in humans. The number of published whole-genome sequences of Elizabethkingia is rapidly increasing. In this study, we used comparative genomics to investigate the genomes of the six species in the Elizabethkingia genus, namely E. meningoseptica, E. anophelis, E. miricola, E. bruuniana, E. ursingii, and E. occulta. In silico DNA-DNA hybridization, whole-genome sequence-based phylogeny, pan genome analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed, and clusters of orthologous groups were evaluated. Of the 86 whole-genome sequences available in GenBank, 21 were complete genome sequences and 65 were shotgun sequences. In silico DNA-DNA hybridization clearly delineated the six Elizabethkingia species. Phylogenetic analysis confirmed that E. bruuniana, E. ursingii, and E. occulta were closer to E. miricola than to E. meningoseptica and E. anophelis. A total of 2,609 clusters of orthologous groups were identified among the six type strains of the Elizabethkingia genus. Metabolism-related clusters of orthologous groups accounted for the majority of gene families in KEGG analysis. New genes were identified that substantially increased the total repertoire of the pan genome after the addition of 86 Elizabethkingia genomes, which suggests that Elizabethkingia has shown adaptive evolution to environmental change. This study presents a comparative genomic analysis of Elizabethkingia, and the results of this study provide knowledge that facilitates a better understanding of this microorganism.


Subject(s)
Flavobacteriaceae/genetics , Genetic Variation , Genome, Bacterial , Genomics , Whole Genome Sequencing , Base Sequence , Computer Simulation , Drug Resistance, Bacterial/genetics , Evolution, Molecular , Flavobacteriaceae/pathogenicity , Phylogeny , Species Specificity , Virulence Factors/genetics
14.
Microorganisms ; 7(9)2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31466280

ABSTRACT

The genus Elizabethkingia has recently emerged as a cause of life-threatening infections in humans, particularly in immunocompromised patients. Several new species in the genus Elizabethkingia have been proposed in the last decade. Numerous studies have indicated that Elizabethkingia anophelis, rather than Elizabethkingia meningoseptica, is the most prevalent pathogen in this genus. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry systems with an extended spectrum database could reliably identify E. anophelis and E. meningoseptica, but they are unable to distinguish the remaining species. Precise species identification relies on molecular techniques, such as housekeeping gene sequencing and whole-genome sequencing. These microorganisms are usually susceptible to minocycline but resistant to most ß-lactams, ß-lactam/ß-lactam inhibitors, carbapenems, and aminoglycosides. They often exhibit variable susceptibility to piperacillin, piperacillin-tazobactam, fluoroquinolones, and trimethoprim-sulfamethoxazole. Accordingly, treatment should be guided by antimicrobial susceptibility testing. Target gene mutations are markedly associated with fluoroquinolone resistance. Knowledge on the genomic characteristics provides valuable insights into in these emerging pathogens.

15.
Emerg Infect Dis ; 25(7): 1412-1414, 2019 07.
Article in English | MEDLINE | ID: mdl-31211685

ABSTRACT

Using 16S rRNA and rpoB gene sequencing, we identified 6 patients infected with Elizabethkingia bruuniana treated at E-Da Hospital (Kaohsiung, Taiwan) during 2005-2017. We describe patient characteristics and the molecular characteristics of the E. bruuniana isolates, including their MICs. Larger-scale studies are needed for more robust characterization of this pathogen.


Subject(s)
Flavobacteriaceae Infections/epidemiology , Flavobacteriaceae Infections/microbiology , Flavobacteriaceae , Aged , Aged, 80 and over , Anti-Bacterial Agents/pharmacology , DNA-Directed RNA Polymerases/genetics , Female , Flavobacteriaceae/classification , Flavobacteriaceae/drug effects , Flavobacteriaceae/genetics , Flavobacteriaceae Infections/history , History, 21st Century , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Taiwan/epidemiology
17.
Genes (Basel) ; 10(4)2019 04 20.
Article in English | MEDLINE | ID: mdl-31010035

ABSTRACT

Bacteria belonging to the genus Chryseobacterium are ubiquitously distributed in natural environments, plants, and animals. Except C. indologenes and C. gleum, other Chryseobacterium species rarely cause human diseases. This study reported the whole-genome features, comparative genomic analysis, and antimicrobial susceptibility patterns of C. arthrosphaerae ED882-96 isolated in Taiwan. Strain ED882-96 was collected from the blood of a patient who had alcoholic liver cirrhosis and was an intravenous drug abuser. This isolate was initially identified as C. indologenes by using matrix-assisted laser desorption ionization-time of flight mass spectrometry. The analysis of 16S ribosomal RNA gene sequence revealed that ED882-96 shared 100% sequence identity with C. arthrosphaerae type strain CC-VM-7T. The results of whole-genome sequencing of ED882-96 showed two chromosome contigs and one plasmid. The total lengths of the draft genomes of chromosome and plasmid were 4,249,864 bp and 435,667 bp, respectively. The findings of both in silico DNA-DNA hybridization and average nucleotide identity analyses clearly demonstrated that strain ED882-96 was a species of C. arthrosphaerae. A total of 83 potential virulence factor homologs were predicted in the whole-genome sequencing of strain ED882-96. This isolate was resistant to all tested antibiotics, including ß-lactams, ß-lactam/ß-lactamase inhibitor combinations, aminoglycosides, fluoroquinolones, tetracycline, glycylcycline, and trimethoprim-sulfamethoxazole. Only one antibiotic resistance gene was recognized in the plasmid. By contrast, many antibiotic resistance genes were identified in the chromosome. The findings of this study suggest that strain ED882-96 is a highly virulent and multidrug-resistant pathogen. Knowledge regarding genomic characteristics and antimicrobial susceptibility patterns provides valuable insights into this uncommon species.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chryseobacterium/classification , Liver Cirrhosis, Alcoholic/microbiology , Substance-Related Disorders/microbiology , Whole Genome Sequencing/methods , Adult , Chromosomes, Bacterial/genetics , Chryseobacterium/drug effects , Chryseobacterium/genetics , Chryseobacterium/isolation & purification , Comparative Genomic Hybridization , DNA, Bacterial/genetics , Drug Resistance, Multiple, Bacterial , Genome Size , Humans , Male , Microbial Sensitivity Tests , Plasmids/genetics , RNA, Ribosomal, 16S/genetics , Taiwan , Virulence Factors/genetics
18.
Theranostics ; 9(3): 620-632, 2019.
Article in English | MEDLINE | ID: mdl-30809297

ABSTRACT

Rationale: Endometriosis is a highly prevalent gynecological disease in women of reproductive age that markedly reduces life quality and fertility. Unfortunately, there is no cure for this disease, which highlights that more efforts are needed to investigate the underlying mechanism for designing novel therapeutic regimens. This study aims to investigate druggable membrane receptors distinctively expressed in endometriotic cells. Methods: Bioinformatic analysis of public databases was employed to identify potential druggable candidates. Normal endometrial tissues and ectopic endometriotic lesions were obtained for the determination of target genes. Primary endometrial and endometriotic stromal cells as well as two different mouse models of endometriosis were used to characterize molecular mechanisms and therapeutic outcomes of endometriosis, respectively. Results: Anthrax toxin receptor 2 (ANTXR2) mRNA and protein are upregulated in the endometriotic specimens. Elevation of ANTXR2 promotes endometriotic cell adhesion, proliferation, and angiogenesis. Furthermore, hypoxia is the driving force for ANTXR2 upregulation via altering histone modification of ANTXR2 promoter by reducing the repressive mark, histone H3 lysine 27 (H3K27) trimethylation, and increasing the active mark, H3K4 trimethylation. Activation of ANTXR2 signaling leads to increased Yes-associated protein 1 (YAP1) nuclear translocation and transcriptional activity, which contributes to numerous pathological processes of endometriosis. Pharmacological blocking of ANTXR2 signaling not only prevents endometriotic lesion development but also causes the regression of established lesion. Conclusion: Taken together, we have identified a novel target that contributes to the disease pathogenesis of endometriosis and provided a potential therapeutic regimen to treat it.


Subject(s)
Endometriosis/pathology , Endometriosis/therapy , Receptors, Peptide/antagonists & inhibitors , Receptors, Peptide/analysis , Animals , Cells, Cultured , Disease Models, Animal , Female , Gene Expression Profiling , Humans , Hypoxia , Mice, Inbred C57BL , Receptors, Peptide/genetics
19.
Article in English | MEDLINE | ID: mdl-30782983

ABSTRACT

Chryseobacterium infections are uncommon, and previous studies have revealed that Chryseobacterium gleum is frequently misidentified as Chryseobacterium indologenes We aimed to explore the differences in clinical manifestations and antimicrobial susceptibility patterns between C. gleum and C. indologenes The database of a clinical microbiology laboratory was searched to identify patients with Chryseobacterium infections between 2005 and 2017. Species were reidentified using 16S rRNA gene sequencing, and patients with C. gleum and C. indologenes infections were included in the study. A total of 42 C. gleum and 84 C. indologenes isolates were collected from consecutive patients. A significant increase in C. indologenes incidence was observed. C. gleum was significantly more associated with bacteremia than C. indologenes Patients with C. gleum infections had more comorbidities of malignancy and liver cirrhosis than those with C. indologenes infections. The overall case fatality rate was 19.8%. Independent risk factors for mortality were female sex and C. indologenes infection. These isolates were most susceptible to minocycline (73%), followed by trimethoprim-sulfamethoxazole (47.6%), tigecycline (34.1%), and levofloxacin (32.5%). C. gleum exhibited a significantly higher rate of susceptibility than C. indologenes to piperacillin, piperacillin-tazobactam, ceftazidime, tigecycline, and levofloxacin. Alterations in DNA gyrase subunit A were identified to be associated with fluoroquinolone resistance in C. indologenes No nonsynonymous substitutions were observed in the quinolone resistance-determining regions (QRDRs) of C. gleum Differences in epidemiology, clinical manifestations, and antimicrobial susceptibility patterns exist between C. gleum and C. indologenes Additional investigations are needed to explore the significance of these differences.


Subject(s)
Chryseobacterium/drug effects , Chryseobacterium/genetics , Fluoroquinolones/pharmacology , DNA Gyrase/genetics , DNA Gyrase/metabolism , Microbial Sensitivity Tests , Mutation/genetics , RNA, Ribosomal, 16S/genetics
20.
Sci Rep ; 9(1): 2267, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30783197

ABSTRACT

Elizabethkingia bruuniana is a novel species of the Elizabethkingia genus. There is scant information on this microorganism. Here, we report the whole-genome features and antimicrobial susceptibility patterns of E. bruuniana strain EM798-26. Elizabethkingia strain EM798-26 was initially identified as E. miricola. This isolate contained a circular genome of 4,393,011 bp. The whole-genome sequence-based phylogeny revealed that Elizabethkingia strain EM798-26 was in the same group of the type strain E. bruuniana G0146T. Both in silico DNA-DNA hybridization and average nucleotide identity analysis clearly demonstrated that Elizabethkingia strain EM798-26 was a species of E. bruuniana. The pan-genome analysis identified 2,875 gene families in the core genome and 5,199 gene families in the pan genome of eight publicly available E. bruuniana genome sequences. The unique genes accounted for 0.2-12.1% of the pan genome in each E. bruuniana. A total of 59 potential virulence factor homologs were predicted in the whole-genome of E. bruuniana strain EM798-26. This isolate was nonsusceptible to multiple antibiotics, but susceptible to aminoglycosides, minocycline, and levofloxacin. The whole-genome sequence analysis of E. bruuniana EM798-26 revealed 29 homologs of antibiotic resistance-related genes. This study presents the genomic features of E. bruuniana. Knowledge of the genomic characteristics provides valuable insights into a novel species.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Flavobacteriaceae/genetics , Genome, Bacterial , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Flavobacteriaceae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...