Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(3): e0119792, 2015.
Article in English | MEDLINE | ID: mdl-25748033

ABSTRACT

A novel avian influenza A (H7N9) virus causes severe human infections and was first identified in March 2013 in China. The H7N9 virus has exhibited two epidemiological peaks of infection, occurring in week 15 of 2013 and week 5 of 2014. Taiwan, which is geographically adjacent to China, faces a large risk of being affected by this virus. Through extensive surveillance, launched in April 2013, four laboratory-confirmed H7N9 cases imported from China have been identified in Taiwan. The H7N9 virus isolated from imported case 1 in May 2013 (during the first wave) was found to be closest genetically to a virus from wild birds and differed from the prototype virus, A/Anhui/1/2013, in the MP gene. The other three imported cases were detected in December 2013 and April 2014 (during the second wave). The viruses isolated from cases 2 and 4 were similar in the compositions of their 6 internal genes and distinct from A/Anhui/1/2013 in the PB2 and MP genes, whereas the virus isolated from case 3 exhibited a novel reassortment that has not been identified previously and was different from A/Anhui/1/2013 in the PB2, PA and MP genes. The four imported H7N9 viruses share similar antigenicity with A/Anhui/1/2013, and their HA and NA genes grouped together in their respective phylogenies. In contrast with the HA and NA genes, which exhibited a smaller degree of diversity, the internal genes were heterogeneous and provided potential distinctions between transmission sources in terms of both geography and hosts. It is important to strengthen surveillance of influenza and to share viral genetic data in real-time for reducing the threat of rapid and continuing evolution of H7N9 viruses.


Subject(s)
Evolution, Molecular , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/isolation & purification , Influenza, Human/genetics , Female , Humans , Influenza, Human/epidemiology , Male , Taiwan
2.
BMC Infect Dis ; 14: 587, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25394941

ABSTRACT

BACKGROUND: World Health Organization (WHO) has recommended individuals with increased risk of contracting influenza A H5N1 infection to be immunized against the virus during the inter-pandemic period. Safety and immunogenicity of H5N1 vaccine among participants primed with homologous or heterologous H5N1 vaccines produced by diverse manufactures have not been reported. METHODS: Healthy individuals aged 20 to 60 years old were recruited and stratified into three groups: participants without priming (control group), participants primed with A/Indonesia/05/2005 vaccine, participants primed with A/Vietnam/1194/2004 vaccine and A/Indonesia/05/2005 vaccine. Enrolled participants received two doses of MF59-adjuvanted A/Vietnam/1194/2004 vaccine (study vaccine). Solicited reactions were recorded by vaccine recipients. Blood samples were obtained for hemagglutination inhibition test. RESULTS: A total of 131 participants were enrolled. No significant adverse events were recorded. Tenderness, fatigue and general muscle ache were the most common solicited reactions which alleviated within one week of immunization. Three weeks after two doses of the study vaccine, 63%, 68% and 88% were in seroprotective status in the control group, A/Indonesia/05/2005 primed group and A/Vietnam/1194/2004 and A/Indonesia/05/2005 primed group, respectively. Participants primed with A/Vietnam/1194/2004 and A/Indonesia/05/2005 showed high immune response after booster with one dose of the study vaccine. CONCLUSION: The study vaccine did not cause severe adverse events. It elicited mostly mild to moderate reactions among participants. Participants primed with A/Vietnam/1194/2004 and A/Indonesia/05/2005 vaccine showed higher immune response than those without priming or primed with A/Indonesia/05/2005 vaccine. The report suggested those with an increased risk of influenza A H5N1 virus exposure may benefit from receiving influenza A H5N1 priming during the inter-pandemic period if the antigenicity of the pandemic influenza strain is similar to that of the priming strain.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Polysorbates/therapeutic use , Squalene/therapeutic use , Adult , Antibodies, Viral/blood , Antibody Formation , Female , Hemagglutination Inhibition Tests , Humans , Immunization, Secondary , Influenza Vaccines/immunology , Male , Middle Aged , Pandemics , Squalene/immunology , Vaccination , Vietnam , World Health Organization , Young Adult
3.
J Biomed Opt ; 19(1): 011018, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24192777

ABSTRACT

Dengue virus (DENV) is one of the major infectious pathogens worldwide. DENV infection is a highly dynamic process. Currently, no antiviral drug is available for treating DENV-induced diseases since little is known regarding how the virus interacts with host cells during infection. Advanced molecular imaging technologies are powerful tools to understand the dynamics of intracellular interactions and molecular trafficking. This study exploited a single-virus particle tracking technology to address whether DENV interacts with autophagy machinery during the early stage of infection. Using confocal microscopy and three-dimensional image analysis, we showed that DENV triggered the formation of green fluorescence protein-fused microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) puncta, and DENV-induced autophagosomes engulfed DENV particles within 15-min postinfection. Moreover, single-virus particle tracking revealed that both DENV particles and autophagosomes traveled together during the viral infection. Finally, in the presence of autophagy suppressor 3-methyladenine, the replication of DENV was inhibited and the location of DENV particles spread in cytoplasma. In contrast, the numbers of newly synthesized DENV were elevated and the co-localization of DENV particles and autophagosomes was detected while the cells were treated with autophagy inducer rapamycin. Taken together, we propose that DENV particles interact with autophagosomes at the early stage of viral infection, which promotes the replication of DENV.


Subject(s)
Autophagy/physiology , Dengue Virus/physiology , Dengue/virology , Molecular Imaging/methods , Adenine/analogs & derivatives , Adenine/pharmacology , Autophagy/drug effects , Cell Line, Tumor , Dengue Virus/chemistry , Dengue Virus/pathogenicity , Host-Pathogen Interactions , Humans , Phagosomes , Sirolimus/pharmacology , Virion/chemistry , Virion/pathogenicity , Virion/physiology
4.
J Clin Microbiol ; 52(1): 76-82, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24153120

ABSTRACT

New variants of the influenza A(H1N1)pdm09 and A(H3N2) viruses were detected in Taiwan between 2012 and 2013. Some of these variants were not detected in clinical specimens using a common real-time reverse transcription-PCR (RT-PCR) assay that targeted the conserved regions of the viral matrix (M) genes. An analysis of the M gene sequences of the new variants revealed that several newly emerging mutations were located in the regions where the primers or probes of the real-time RT-PCR assay bind; these included three mutations (G225A, T228C, and G238A) in the A(H1N1)pdm09 virus, as well as one mutation (C163T) in the A(H3N2) virus. These accumulated mismatch mutations, together with the previously identified C154T mutation of the A(H1N1)pdm09 virus and the C153T and G189T mutations of the A(H3N2) virus, result in a reduced detection sensitivity for the real-time RT-PCR assay. To overcome the loss of assay sensitivity due to mismatch mutations, we established a real-time RT-PCR assay using degenerate nucleotide bases in both the primers and probe and successfully increased the sensitivity of the assay to detect circulating variants of the human influenza A viruses. Our observations highlight the importance of the simultaneous use of different gene-targeting real-time RT-PCR assays for the clinical diagnosis of influenza.


Subject(s)
Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza, Human/diagnosis , Mutation , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Viral Matrix Proteins/genetics , Base Pair Mismatch , DNA Primers/genetics , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/virology , Molecular Diagnostic Techniques/methods , Molecular Sequence Data , Mutant Proteins/genetics , Oligonucleotide Probes/genetics , RNA, Viral/genetics , Sensitivity and Specificity , Sequence Analysis, DNA , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...