Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
J Biotechnol ; 391: 1-10, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38636846

ABSTRACT

The methylotrophic yeast, Pichia pastoris (P. pastoris; syn. Komagataella spp.), known for its ability to grow to high cell densities, its strong and tightly regulated promoters, and mammalian liked secretion pathway, has been widely used as a robust system to secrete heterologous proteins. The α-mating factor (MF) secretion signal leader from Saccharomyces cerevisiae (S. cerevisiae) is currently the most successfully used secretion signal sequence in the P. pastoris system. In this study, the secretion efficiency mediated by the α-MF secretion signal leaders from Komagataella pastoris (K. pastoris) and Komagataella phaffii (K. phaffii) was assessed using Enhanced Green Fluorescent Protein (EGFP) as a reporter. The results indicated that the secretion efficiency associated with the α-MF secretion signal leaders from K. pastoris and K. phaffii was notably lower in comparison to the α-MF secretion signal leader from S. cerevisiae. Further research indicated that N-linked glycosylation of the α-MF secretion signal leader enhanced the secretion of EGFP. Disruption of calnexin impaired the secretion of EGFP mediated by the N-linked glycosylated α-MF secretion signal leader, without affecting EGFP secretion mediated by the non-N-linked glycosylation α-MF secretion signal leader. The N-linked glycosylated of the α-MF secretion signal leader reduced the unfolded protein response (UPR) in the endoplasmic reticulum (ER). The enhancement of EGFP secretion by the N-linked glycosylated α-MF secretion signal leader might be achieved through the acceleration of proper folding of glycoproteins by the molecular chaperone calnexin. This study enhances the understanding of protein secretion in P. pastoris, specifically highlighting the influence of N-linked glycosylation on secretion efficiency, and could have implications for the production of recombinant proteins in bioengineering and biotechnological applications in P. pastoris.

2.
Colloids Surf B Biointerfaces ; 238: 113890, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608462

ABSTRACT

A promising therapeutic strategy in cancer treatment merges photodynamic therapy (PDT) induced apoptosis with ferroptosis, a form of programmed cell death governed by iron-dependent lipid peroxidation. Given the pivotal role of mitochondria in ferroptosis, the development of photosensitizers that specifically provoke mitochondrial dysfunction and consequentially trigger ferroptosis via PDT is of significant interest. To this end, we have designed and synthesized a novel nanoparticle, termed FECTPN, tailored to address this requisite. FECTPN harnesses a trifecta of critical attributes: precision mitochondria targeting, photoactivation capability, pH-responsive drug release, and synergistic apoptosis-ferroptosis antitumor treatment. This nanoparticle was formulated by conjugating an asymmetric silicon phthalocyanine, Chol-SiPc-TPP, with the ferroptosis inducer Erastin onto a ferritin. The Chol-SiPc-TPP is a chemically crafted entity featuring cholesteryl (Chol) and triphenylphosphine (TPP) functionalities bonded axially to the silicon phthalocyanine, enhancing mitochondrial affinity and leading to effective PDT and subsequent apoptosis of cells. Upon cellular uptake, FECTPN preferentially localizes to mitochondria, facilitated by Chol-SiPc-TPP's targeting mechanics. Photoactivation induces the synchronized release of Chol-SiPc-TPP and Erastin in the mitochondria's alkaline domain, driving the escalation of both ROSs and lipid peroxidation. These processes culminate in elevated antitumor activity compared to the singular application of Chol-SiPc-TPP-mediated PDT. A notable observation is the pronounced enhancement in glutathione peroxidase-4 (GPX4) expression within MCF-7 cells treated with FECTPN and subjected to light exposure, reflecting intensified oxidative stress. This study offers compelling evidence that FECTPN can effectively induce ferroptosis and reinforces the paradigm of a synergistic apoptosis-ferroptosis pathway in cancer therapy, proposing a novel route for augmented antitumor treatments.


Subject(s)
Antineoplastic Agents , Apoptosis , Ferroptosis , Indoles , Mitochondria , Nanoparticles , Organosilicon Compounds , Photochemotherapy , Photosensitizing Agents , Indoles/chemistry , Indoles/pharmacology , Apoptosis/drug effects , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Ferroptosis/drug effects , Nanoparticles/chemistry , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Particle Size , Cell Survival/drug effects , Surface Properties
3.
Biotechnol Biofuels Bioprod ; 15(1): 140, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36527112

ABSTRACT

BACKGROUND: The budding yeast Komagataella phaffii (Pichia pastoris) is widely employed to secrete proteins of academic and industrial interest. For secretory proteins, signal peptides are the sorting signal to direct proteins from cytosol to extracellular matrix, and their secretion efficiency directly impacts the yields of the targeted proteins in fermentation broth. Although the α-mating factor (MF) secretion signal from S. cerevisiae, the most common and widely used signal sequence for protein secretion, works in most cases, limitation exists as some proteins cannot be secreted efficiently. As the optimal choice of secretion signals is often protein specific, more secretion signals need to be developed to augment protein expression levels in K. phaffii. RESULTS: In this study, the secretion efficiency of 40 α-MF secretion signals from various yeast species and 32 endogenous signal peptides from K. phaffii were investigated using enhanced green fluorescent protein (EGFP) as the model protein. All of the evaluated α-MF secretion signals successfully directed EGFP secretion except for the secretion signals of the yeast D. hansenii CBS767 and H. opuntiae. The secretion efficiency of α-MF secretion signal from Wickerhamomyces ciferrii was higher than that from S. cerevisiae. 24 out of 32 endogenous signal peptides successfully mediated EGFP secretion. The signal peptides of chr3_1145 and FragB_0048 had similar efficiency to S. cerevisiae α-MF secretion signal for EGFP secretion and expression. CONCLUSIONS: The screened α-MF secretion signals and endogenous signal peptides in this study confer an abundance of signal peptide selection for efficient secretion and expression of heterologous proteins in K. phaffii.

4.
World J Microbiol Biotechnol ; 38(12): 226, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36121482

ABSTRACT

BACKGROUND: The heterologous expression of biosynthetic pathway genes for pharmaceutical or fine chemical production usually requires to express more than one gene in the host cells. In eukaryotes, the pathway flux is typically balanced by controlling the transcript levels of the genes involved. It is difficult to balance the stoichiometric fine-tuning of the reaction steps of the pathway by acting on one or two promoters. Furthermore, the promoter used should not be identical to avoid loss of inserted genes by recombination or dilute its transcription factors. RESULTS: Based on RNA-seq data, 18 candidate genes with the highest transcription levels at three carbon sources (glucose, glycerol and methanol) were selected and their promoter regions were isolated from GS115 genome. The performance of these promoters on the level of protein production was evaluated using LacZ and EGFP genes as the reporters, respectively. These isolated promoters all exhibited activity to express LacZ gene. Using LacZ as a reporter, of the 18 promoter candidates, 9 promoters showed higher expression levels for the reporter compare to pGAP, a strong promoter widely used for constitutive expression of heterologous proteins in Pichia pastoris. These promoters with high expression levels were further employed to evaluate secreted expression using EGFP as a reporter. 6 promoters exhibited stronger protein expression compare to pGAP. Interestingly, the protein expression driven by pFDH1 was slightly higher than that of commonly used pAOX1 at methanol, and methanol-induced expression of pFDH1 was not repressed by glycerol. CONCLUSION: The various promoters identified in this study could be used for heterologous expression of biosynthetic pathway genes for pharmaceutical or fine chemical production. the methanol-induced pFDH1 that is not repressed by glycerol is an attractive alternative to pAOX1 and may provide a novel way to produce heterologous proteins in Pichia pastoris.


Subject(s)
Methanol , Pichia , Carbon/metabolism , Glucose/metabolism , Glycerol/metabolism , Methanol/metabolism , Pichia/genetics , Pichia/metabolism , Promoter Regions, Genetic , Saccharomycetales , Transcription Factors/genetics
5.
Chembiochem ; 23(9): e202100597, 2022 05 04.
Article in English | MEDLINE | ID: mdl-34958167

ABSTRACT

Proteins directly participate in tremendous physiological processes and mediate a variety of cellular functions. However, precise manipulation of proteins with predefined relative position and stoichiometry for understanding protein-protein interactions and guiding cellular behaviors is still challenging. With superior programmability of DNA molecules, DNA origami technology is able to construct arbitrary nanostructures that can accurately control the arrangement of proteins with various functionalities to solve these problems. Herein, starting from the classification of DNA origami nanostructures and the category of assembled proteins, we summarize the existing DNA origami-based protein manipulation systems (PMSs), review the advances on the regulation of their functions, and discuss their applications in cellular behavior modulation and disease therapy. Moreover, the limitations and potential directions of DNA origami-based PMSs are also presented, which may offer guidance for rational construction and ingenious application.


Subject(s)
DNA , Nanostructures , DNA/chemistry , Nanostructures/chemistry , Nanotechnology , Nucleic Acid Conformation , Proteins/genetics
6.
Microb Cell Fact ; 20(1): 209, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34736476

ABSTRACT

BACKGROUND: Codon optimization is a common method to improve protein expression levels in Pichia pastoris and the current strategy is to replace rare codons with preferred codons to match the codon usage bias. However, codon-pair contexts have a profound effect on translation efficiency by influencing both translational elongation rates and accuracy. Until now, it remains untested whether optimized genes based on codon pair bias results in higher protein expression levels compared to codon usage bias. RESULTS: In this study, an algorithm based on dynamic programming was introduced to develop codon pair optimization (CPO) which is a software tool to provide simple and efficient codon pair optimization for synthetic gene design in Pichia pastoris. Two reporters (MT1-MMP E2C6 and ADAM17 A9B8 scFvs) were employed to test the effects of codon pair bias and CPO optimization on their protein expression levels. Four variants of MT1-MMP E2C6 and ADAM17 A9B8 for each were generated, one variant with the best codon-pair context, one with the worst codon-pair context, one with unbiased codon-pair context, and another optimized based on codon usage. The expression levels of variants with the worst codon-pair context were almost undetectable by Western blot and the variants with the best codon-pair context were expressed well. The expression levels on MT1-MMP E2C6 and ADAM17 A9B8 were more than five times and seven times higher in the optimized sequences based on codon-pair context compared to that based on codon usage, respectively. The results indicated that the codon-pair context-based codon optimization is more effective in enhancing expression of protein in Pichia pastoris. CONCLUSIONS: Codon-pair context plays an important role on the protein expression in Pichia pastoris. The codon pair optimization (CPO) software developed in this study efficiently improved the protein expression levels of exogenous genes in Pichia pastoris, suggesting gene design based on codon pair bias is an alternative strategy for high expression of recombinant proteins in Pichia pastoris.


Subject(s)
Codon/genetics , Gene Expression , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Software , Algorithms , Genes, Synthetic
7.
Cancer Sci ; 111(8): 2803-2813, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32449268

ABSTRACT

Death-associated protein kinase 1 (DAPK) is a calcium/calmodulin kinase that plays a vital role as a suppressor gene in various cancers. Yet its role and target gene independent of p53 is still unknown in hepatocellular carcinoma (HCC). In this study, we discovered that DAPK suppressed HCC cell migration and invasion instead of proliferation or colony formation. Using a proteomics approach, we identified DEAD-box helicase 20 (DDX20) as an important downstream target of DAPK in HCC cells and critical for DAPK-mediated inhibition of HCC cell migration and invasion. Using integrin inhibitor RGD and GTPase activity assays, we discovered that DDX20 suppressed HCC cell migration and invasion through the CDC42-integrin pathway, which was previously reported as an important downstream pathway of DAPK in cancer. Further research using cycloheximide found that DAPK attenuates the proteasomal degradation of DDX20 protein, which is dependent on the kinase activity of DAPK. Our results shed light on new functions and regulation for both DAPK and DDX20 in carcinogenesis and identifies new potential therapeutic targets for HCC.


Subject(s)
Carcinogenesis/pathology , Carcinoma, Hepatocellular/pathology , DEAD Box Protein 20/metabolism , Death-Associated Protein Kinases/metabolism , Liver Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , HEK293 Cells , Humans , Neoplasm Invasiveness/pathology , Up-Regulation
8.
Bioengineered ; 11(1): 318-327, 2020 12.
Article in English | MEDLINE | ID: mdl-32163000

ABSTRACT

The human chromogranin A-derived peptide CGA-N12, which is composed of 12 amino acid residues with the sequence ALQGAKERAHQQ, showed strong antifungal activity and the least hemolytic activity in previous studies. However, synthetic peptides are relatively expensive to produce. Recombinant expression of peptides in the host cells, such as bacteria or yeast, can fastly provide cost-efficient products of peptides. Here, we developed an innovative system to produce CGA-N12 peptides in the yeast Pichia pastoris GS115 using genetic engineering technology. In order to directly secret short CGA-N12 peptides into the culture media from GS115 cells and enhance its expression effect, the structure of the CGA-N12 coding sequence was designed to mimic that of native α-factor gene of Saccharomyces cerevisiae. Four long primer pairs with sticky end were used to synthesize CGA-N12 expression sequence which contains four copies of CGA-N12 flanked by a Lys-Arg pair and two Glu-Ala repeating units. Endogenous proteases Kex2 and Ste13 in Golgi apparatus recognize and excise Lys-Arg and Glu-Ala pair to release short CGA-N12 peptides from the tandem repeat sequences, respectively. The CGA-N12 peptides were successfully expressed in Pichia pastoris with a yield of up to 30 mg/L of yeast culture as determined using HPLC. Our study indicated that the strategy employed in this work may be a good way to express small-molecule peptides directly in the Pichia pastoris system.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/metabolism , Chromogranin A/chemistry , Saccharomycetales/metabolism , Chromatography, High Pressure Liquid , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Golgi Apparatus/metabolism , Prognosis , Proprotein Convertases/genetics , Proprotein Convertases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
9.
ACS Appl Bio Mater ; 2(12): 5976-5984, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-35021518

ABSTRACT

A cholesterol silicon(IV) phthalocyanine (Chol-Pc) and a water-soluble Chol-Pc based nanoparticle (DSPE@Chol-Pc), which was prepared using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG2000) as a nanocarrier were developed. Chol-Pc readily distributed within the cholesterol-rich domains and was preferentially localized in the Golgi apparatus after being transported into the cells. The trafficking of DSPE@Chol-Pc in breast cancer cells was visualized by tracking the fluorescence of Chol-Pc and FITC-labeled DSPE-PEG2000 through two-photonic imaging in real-time. It was discovered that Chol-Pc disassociated from the DSPE-PEG2000 on the plasma membrane and traveled to the cholesterol-rich domains soon afterward. Both DSPE@Chol-Pc and Chol-Pc effectively mediated photodynamic therapy to kill the breast cancer cells. After light irradiation, we found that the organizations of clustered cholesterol-rich domains in cells were destroyed, presumably leading to the death of cells for photodynamic therapy. It should be noted that DSPE@Chol-Pc is highly soluble in aqueous solution and has strong red fluorescence under two-photon excitation. Thus, it could be an excellent probe for detecting cholesterol-rich domains and studying transport processes of cholesterol in living cells.

10.
Biotechnol Biofuels ; 12: 300, 2019.
Article in English | MEDLINE | ID: mdl-31890028

ABSTRACT

BACKGROUND: Pichia pastoris is becoming a promising chassis cell for metabolic engineering and synthetic biology after its whole genome and transcriptome sequenced. However, the current systems for multigene co-expression in P. pastoris are not efficient. The internal ribosome entry site (IRES) has an ability to recruit the ribosome to initiate protein synthesis by cap-independent translation manner. This study seeks to screen IRES sequences that are functional in P. pastoris, which will allow P. pastoris to express multiple proteins in a single mRNA and increase its efficacy as a platform for metabolic engineering and synthetic biology. RESULTS: In order to efficiently screen the IRES sequences, we first set out to create a screening system using LacZ gene. Due to the cryptic transcription of the LacZ gene, we established the α-complementation system of ß-galactosidase in P. pastoris with the optimum length of the α-complementing peptide at ~ 92 amino acids. The optimal α-complementing peptide was then used as the second reporter to screen IRESes in the engineered GS115 expressing the corresponding ω-peptide. A total of 34 reported IRESes were screened. After ruling out all false positive or negative IRESes, only seven IRESes were functional in P. pastoris, which were from TEV, PVY, RhPV, TRV, KSHV, crTMV viruses and the 5'-UTR of the YAP1 gene of S. cerevisiae. CONCLUSIONS: We showed here that α-complementation also works in P. pastoris and it can be used in a variety of in vivo studies. The functional IRESes screened in this study can be used to introduce multiple genes into P. pastoris via a prokaryotic-like polycistronic manner, which provided new efficient tools for metabolic engineering and synthetic biology researches in P. pastoris.

11.
Chem Commun (Camb) ; 54(94): 13279-13282, 2018 Nov 22.
Article in English | MEDLINE | ID: mdl-30411745

ABSTRACT

A polyfluoroalkyl substituted phthalocyanine based supramolecular light switch was assembled by the host-guest interaction between the novel polyfluoroalkyl substituted silicon phthalocyanine and pyrene-ß-cyclodextrin, which was attached on the sidewalls of SWNTs through the pyrene groups. This supermolecule can not only absorb light to convert its energy into heat energy, but also respond to light, control the release of phthalocyanine and restore fluorescence and produce singlet oxygen for a synergistic photothermal and photodynamic effect against Escherichia coli.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Hydrocarbons, Fluorinated/pharmacology , Indoles/pharmacology , Light , Photosensitizing Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydrocarbons, Fluorinated/chemistry , Indoles/chemistry , Isoindoles , Macromolecular Substances/chemistry , Macromolecular Substances/pharmacology , Microbial Sensitivity Tests , Photochemical Processes , Photosensitizing Agents/chemistry
12.
Microb Cell Fact ; 17(1): 172, 2018 Nov 08.
Article in English | MEDLINE | ID: mdl-30409181

ABSTRACT

BACKGROUND: Proprotein convertase furin is responsible for the processing of a wide variety of precursors consisted of signal peptide, propeptide and mature peptide in mammal. Many precursors processed by furin have important physiological functions and can be recombinantly expressed in Pichia pastoris expression system for research, pharmaceutical and vaccine applications. However, it is not clear whether the furin cleavage sites between the propeptide and mature peptide can be properly processed in P. pastoris, bringing uncertainty for proper expression of the coding DNA sequences of furin precursors containing the propeptides and mature peptides. RESULTS: In this study, we evaluated the ability of P. pastoris to process furin cleavage sites and how to improve the cleavage efficiencies of furin cleavage sites in P. pastoris. The results showed that P. pastoris can process furin cleavage sites but the cleavage efficiencies are not high. Arg residue at position P1 or P4 in furin cleavage sites significantly affect cleavage efficiency in P. pastoris. Kex2 protease, but not YPS1, in P. pastoris is responsible for processing furin cleavage sites. Heterologous expression of furin or overexpression of Kex2 in P. pastoris effectively increased cleavage efficiencies of furin cleavage sites. CONCLUSIONS: Our investigation on the processing of furin cleavage sites provides important information for recombinant expression of furin precursors in P. pastoris. Furin or Kex2 overexpressing strains may be good choices for expressing precursors processed by furin in P. pastoris.


Subject(s)
Furin/metabolism , Pichia/metabolism , Gene Expression , Proprotein Convertases/metabolism , Saccharomyces cerevisiae Proteins/metabolism
13.
Oncol Lett ; 15(6): 8261-8268, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29805560

ABSTRACT

Death associated protein kinase 1 (DAPK1) is a notable serine/threonine kinase involved in the regulation of multiple cellular pathways, including apoptosis and autophagy. Although DAPK1 is usually considered to be a tumor suppressor, it was previously reported to promote the viability of p53 mutant cancer cell lines and possess physiological oncogenic functions in breast cancer. However, the ability of endogenous DAPK1 to suppress breast cancer cell mobility has not been assessed. In the present study, the prognostic function of DAPK1 in a Chinese patient cohort was evaluated, and no significant association was observed between DAPK1 expression and patient survival or lymph node metastasis. In order to investigate the physiological function of endogenous DAPK1, stable inducible DAPK1 knockdown MCF7 and MDA-MB-231 cell lines were established. Consistent with previous studies, endogenous DAPK1 only regulated cell viability in p53 mutant MDA-MB-231 cells. However, knockdown of DAPK1 did not significantly affect cell motility of either MCF7 or MDA-MB-231 cells. Altogether, these results further explored the function of endogenous DAPK1 in breast cancer and may shed light in understanding the molecular signaling pathways regulating the physiological function of DAPK1.

14.
Cancers (Basel) ; 10(3)2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29558404

ABSTRACT

The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC.

15.
Biomech Model Mechanobiol ; 17(4): 1209-1215, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29550968

ABSTRACT

Mitosis is an important physiological event accompanying with dramatic changes of cellar biophysical properties. Failure of mitosis results in cell death or chromosome aneuploidy. In this study, we used atomic force microscopy to probe and compare the biophysical properties of tumor cells at different stages during mitosis. The rounding forces of MCF-7 cells oscillated during mitosis. At anaphase, the average elasticity of cells was higher than that at other phases. Cholesterol depletion with M[Formula: see text]CD led to an increase in the average elasticity, whereas the average roughness of membrane surface decreased at the absence of cholesterol. Our study indicated that the distribution of actin filaments could affect the biophysical properties of tumor cells and cellular morphology during mitosis. Furthermore, the biophysical properties of tumor cells were also regulated by membrane cholesterol during mitosis. This work provides a new detection approach for monitoring tumor cell development at single cell level.


Subject(s)
Biophysical Phenomena , Microscopy, Atomic Force , Mitosis , Neoplasms/pathology , Cell Line, Tumor , Cell Shape , Cholesterol/metabolism , Elasticity , Humans , MCF-7 Cells
16.
Oncol Lett ; 14(6): 6678-6684, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29163695

ABSTRACT

Ouabain has been used for the treatment of heart failure and atrial fibrillation. Its potential anticancer effect has also attracted great interest. The aim of the present study was to evaluate the anticancer effect of ouabain and investigate its molecular target. The effects of ouabain on the viability of and induction of cellular death on OS-RC-2 renal cancer cells were examined using the MTT assay and acridine orange/ethidium bromide staining. The levels of Ca2+ and reactive oxygen species were determined using Fura-3-acetoxymethyl ester and dichloro-dihydro-fluorescein diacetate probes, respectively. Apoptosis was examined using annexin V-fluorescein isothiocyanate/propidium iodide staining and western blotting. The expression profile of the different Na+/K+-ATPase (NKA) isoforms in NCI-H446 small cell lung cancer cells was determined using immunocytochemistry and reverse transcription polymerase chain reaction analysis. In the present study, it was demonstrated that ouabain inhibited cancer cell proliferation and induced apoptosis while no significant difference in the expression of NKA α1 and α3 isoforms was detected following 48 h of ouabain treatment. Furthermore, expression of NKA α3 but not the α1 isoform was associated with ouabain sensitivity. The results of the present study indicated that ouabain targets the NKA α3 isoform, inhibits cancer cell proliferation and induces apoptosis.

17.
Sensors (Basel) ; 17(7)2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28671629

ABSTRACT

Motor imagery is based on the volitional modulation of sensorimotor rhythms (SMRs); however, the sensorimotor processes in patients with amyotrophic lateral sclerosis (ALS) are impaired, leading to degenerated motor imagery ability. Thus, motor imagery classification in ALS patients has been considered challenging in the brain-computer interface (BCI) community. In this study, we address this critical issue by introducing the Grassberger-Procaccia and Higuchi's methods to estimate the fractal dimensions (GPFD and HFD, respectively) of the electroencephalography (EEG) signals from ALS patients. Moreover, a Fisher's criterion-based channel selection strategy is proposed to automatically determine the best patient-dependent channel configuration from 30 EEG recording sites. An EEG data collection paradigm is designed to collect the EEG signal of resting state and the imagination of three movements, including right hand grasping (RH), left hand grasping (LH), and left foot stepping (LF). Five late-stage ALS patients without receiving any SMR training participated in this study. Experimental results show that the proposed GPFD feature is not only superior to the previously-used SMR features (mu and beta band powers of EEG from sensorimotor cortex) but also better than HFD. The accuracies achieved by the SMR features are not satisfactory (all lower than 80%) in all binary classification tasks, including RH imagery vs. resting, LH imagery vs. resting, and LF imagery vs. resting. For the discrimination between RH imagery and resting, the average accuracies of GPFD in 30-channel (without channel selection) and top-five-channel configurations are 95.25% and 93.50%, respectively. When using only one channel (the best channel among the 30), a high accuracy of 91.00% can still be achieved by the GPFD feature and a linear discriminant analysis (LDA) classifier. The results also demonstrate that the proposed Fisher's criterion-based channel selection is capable of removing a large amount of redundant and noisy EEG channels. The proposed GPFD feature extraction combined with the channel selection strategy can be used as the basis for further developing high-accuracy and high-usability motor imagery BCI systems from which the patients with ALS can really benefit.


Subject(s)
Amyotrophic Lateral Sclerosis , Brain-Computer Interfaces , Electroencephalography , Fractals , Humans , Imagination
18.
PeerJ ; 5: e3084, 2017.
Article in English | MEDLINE | ID: mdl-28316888

ABSTRACT

BACKGROUND: Death-associated protein kinase 1 (DAPK) is an important tumor suppressor kinase involved in the regulation of multiple cellular activities such as apoptosis and autophagy. DNA methylation of DAPK gene was found in various types of cancers and often correlated with the clinicopathological characteristics. However, the mRNA and protein expression of DAPK in the same sample was rarely measured. Thus, it was unclear if the correlation between DAPK gene methylation and clinicopathological parameters was due to the loss of DAPK expression. METHODS: In this study, the DNA methylation rate, mRNA and protein expression of DAPK was quantitatively detected in 15 pairs of breast cancer patient samples including tumor (T) and adjacent non-tumor (N) tissues. RESULTS: The correlation between DNA methylation rate and mRNA expression, together with the correlation between mRNA and protein expression, was calculated. No correlation was observed between any levels using either the measurement value of each sample or the T/N ratio of each pair. DISCUSSION: These data suggested that the DNA methylation status of DAPK did not correlate well with its mRNA or protein expression. Extra caution is needed when interpreting the DNA methylation data of DAPK gene in clinical studies.

19.
Mol Med Rep ; 15(2): 941-947, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28035421

ABSTRACT

Sorafenib is a chemotherapeutic agent approved for the treatment of hepatocellular carcinoma (HCC) in China. Digitoxin is a cardiotonic drug, which has been demonstrated to exhibit anticancer effects in a number of cancers, but not in HCC. The aim of the present study was to evaluate the combinational effect of sorafenib and digitoxin on the treatment of HCC and to investigate the relevant molecular mechanisms of action that underlie these effects. The proliferation, cell death and migration of HCC cell lines, HepG2 and BEL­7402, were examined using MTT, acridine orange/ethidium bromide staining and scratch wound healing assays, respectively. In addition, alterations in the expression of phosphorylated-extracellular signal-regulated kinase (ERK), hypoxia­inducible factor 1­α (HIF­1α), hypoxia­inducible factor 2­α (HIF­2α) and vascular endothelial growth factor (VEGF) were measured prior to and following drug application using western blot analysis. Digitoxin and sorafenib synergistically inhibited cell viability, but did not inhibit migration, which was potentially mediated by suppression of ERK and hypoxia signaling. In downstream signaling pathways, the activity of ERK was synergistically suppressed by combinatorial treatment of HepG2 and BEL­7402 cells with sorafenib and digitoxin. In addition, the expression of HIF­1α, HIF­2α and VEGF was synergistically downregulated by combinational treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Cardiotonic Agents/pharmacology , Cell Movement/drug effects , Digitoxin/pharmacology , Liver Neoplasms/drug therapy , Niacinamide/analogs & derivatives , Phenylurea Compounds/pharmacology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Extracellular Signal-Regulated MAP Kinases/metabolism , Hep G2 Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Niacinamide/pharmacology , Sorafenib , Vascular Endothelial Growth Factor A/metabolism
20.
Photodiagnosis Photodyn Ther ; 16: 124-131, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27671516

ABSTRACT

A novel series of nanoparticles formed via an electrostatic interaction between the periphery of negatively charged 1-2 generation aryl benzyl ether dendrimer zinc (II) phthalocyanines and positively charged poly(L-lysin) segment of triblock copolymer, poly(L-lysin)-block-poly(ethylene glycol)-block-poly(L-lysin), was developed for the use as an effective photosensitizers in photodynamic therapy. The dynamic light scattering, atomic force microscopy showed that two nanoparticles has a relevant size of 80-150nm. The photophysical properties and singlet oxygen quantum yields of free dendrimer phthalocyanines and nanoparticles exhibited generation dependence. The intracellular uptake of dendrimer phthalocyanines in Hela cells was significantly elevated as they were incorporated into the micelles, but was inversely correlated with the generation of dendrimer phthalocyanines. The photocytotoxicity of dendrimer phthalocyanines incorporated into polymeric micelles was also increased. The presence of nanoparticles induced efficient cell death. Using a mitochondrial-sepcific dye rhodamine 123 (Rh123), our fluorescence microscopic result indicated that nanoparticles localized to the mitochondria.


Subject(s)
Indoles/chemistry , Nanocapsules/administration & dosage , Nanocapsules/chemistry , Neoplasms, Experimental/drug therapy , Photochemotherapy/methods , Cell Survival/drug effects , Cell Survival/radiation effects , Dendrimers/chemical synthesis , Drug Compounding/methods , Drug Synergism , HeLa Cells , Humans , Isoindoles , Nanocapsules/ultrastructure , Neoplasms, Experimental/pathology , Particle Size , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...