Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Acta Derm Venereol ; 104: adv23805, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38590175

ABSTRACT

ATP citrate lyase, the first rate-limiting enzyme in de novo lipogenesis, plays a crucial role in tumour progression. This study explores ATP citrate lyase's potential as a tumour biomarker and its role in cutaneous squamous cell carcinoma. ATP citrate lyase expression patterns were analysed using TCGA and TIMER databases, and patient skin specimens were collected for immunohistochemistry to determine ATP citrate lyase levels. Cell proliferation, cell cycle, apoptosis, and c-Myc expression were assessed in A431 and SCL-1 cells. Stable cell lines with reduced ATP citrate lyase expression were obtained and subcutaneously implanted into nude mice to evaluate in vivo tumour growth. Ki67, c-Myc expression and TUNEL staining were analysed in subcutaneous tumours. ATP citrate lyase exhibited upregulation in various tumours, and showed significant associations with prognosis and immune infiltrate. Moreover, ATP citrate lyase was highly expressed in cutaneous squamous cell carcinoma. After ATP citrate lyase silencing, cutaneous squamous cell carcinoma cell growth decelerated, the cell cycle halted, cell apoptosis increased, and c-Myc expression decreased. Animal experiments revealed that, following ATP citrate lyase knockdown, tumour tissue growth slowed down, and there was a reduction in Ki-67 and c-Myc expression, accompanied by enhanced TUNEL staining. In conclusion, ATP citrate lyase may serve as a tumour biomarker. It is highly expressed in cutaneous squamous cell carcinoma and may serve as a therapeutic target.


Subject(s)
Carcinoma, Squamous Cell , Skin Neoplasms , Mice , Animals , Humans , ATP Citrate (pro-S)-Lyase/genetics , ATP Citrate (pro-S)-Lyase/metabolism , Carcinoma, Squamous Cell/genetics , Biomarkers, Tumor/genetics , Mice, Nude , Skin Neoplasms/genetics
2.
Inflammation ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472599

ABSTRACT

Psoriasis is a chronic inflammatory skin disease characterized by abnormal keratinocyte proliferation and inflammation. MiRNAs and serum exosomes participate in the pathogenesis of many diseases. The objective of this study is to explore the function of miR-6785-5p in psoriatic keratinocytes and its upstream and downstream mechanisms. For our study, we employed qRT-PCR and fluorescence in situ hybridization to evaluate miR-6785-5p in psoriatic keratinocytes and conducted a microRNA microarray for identifying differentially expressed miRNAs in patient serum exosomes. We then cocultured keratinocytes with these exosomes, using immunofluorescence staining and qRT-PCR to assess uptake and miR-6785-5p overexpression. We explored miR-6785-5p's role through transfection with specific mimics and inhibitors and confirmed MNK2 as its target using a luciferase assay. MNK2's function was further examined using siRNA technology. Lastly, we applied an imiquimod-induced psoriasis mouse model, also employing siRNA, to investigate MNK2's role in psoriasis. MiR-6785-5p demonstrates a notable overexpression in the keratinocytes of psoriasis patients as well as in their serum exosomes. These keratinocytes actively uptake the miR-6785-5p-enriched serum exosomes. Functionally, miR-6785-5p appears to alleviate psoriasis-like skin damage, observable both in vitro and in vivo, by downregulating MNK2 expression. Psoriasis keratinocytes uptake serum exosomes highly expressing miR-6785-5p. MiR-6785-5p inhibits the abnormal proliferation and inflammatory state of keratinocytes by reducing MNK2 expression and interfering with the MNK2/p-eIF4E axis.

3.
Oncol Rep ; 51(5)2024 05.
Article in English | MEDLINE | ID: mdl-38551165

ABSTRACT

Melanoma is the most lethal type of skin cancer with an increasing cutaneous cancer­related mortality rate worldwide. Despite therapeutic advances in targeted therapy and immunotherapy, the overall survival of patients with melanoma remains unsatisfactory. Thus, a further understanding of the pathogenesis of melanoma may aid towards the development of therapeutic strategies. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is a key enzyme that converts lysophosphatidylcholine into phosphatidylcholine in lipid remodeling. In the present study, LPCAT1 was found to play a pro­proliferative role in melanoma. Firstly, the expression of LPCAT1 was found to be upregulated in tissues from patients with melanoma compared with that in benign nevi. Subsequently, LPCAT1 knockdown was performed, utilizing short hairpin RNA, which induced melanoma cell cycle arrest at the G1/S transition and promoted cell death. Moreover, LPCAT1 facilitated melanoma cell growth in an Akt­dependent manner. In summary, the results of the present study indicate that targeting LPCAT1 may impede cell proliferation by inhibiting Akt signaling, thus providing a promising therapeutic strategy for melanoma in clinical practice.


Subject(s)
1-Acylglycerophosphocholine O-Acyltransferase , Melanoma , Proto-Oncogene Proteins c-akt , Skin Neoplasms , Humans , 1-Acylglycerophosphocholine O-Acyltransferase/genetics , 1-Acylglycerophosphocholine O-Acyltransferase/metabolism , Cell Line, Tumor , Cell Proliferation , Melanoma/genetics , Melanoma/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology
4.
J Invest Dermatol ; 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38246582

ABSTRACT

Psoriasis is a chronic and relapsing inflammatory skin disorder characterized by keratinocyte hyperproliferation and immune cell infiltration. LPCAT1 has been identified as a cancer promoter in cutaneous squamous cell carcinoma by us, yet its role in psoriasis remains elusive. In this study, we report that LPCAT1 is highly expressed in psoriatic skin lesions. LPCAT1 promotes keratinocyte hyperproliferation and enhances the secretion of IL-1ß, IL-6, CXCL10, CCL20, S100A9, and platelet-activating factor. In psoriasiform keratinocytes, LPCAT1 promotes proliferation and inflammatory mediator production by activating protein kinase B/NF-κB and signal transducer and activator of transcription 3 signaling pathways. Furthermore, LPCAT1 inhibition attenuated epidermal hyperplasia and relieved skin inflammation in imiquimod-treated mice. Importantly, we identify the glucose transporter GLUT3, a recently reported promising target to mitigate T helper 17 cell-mediated inflammatory diseases, as a critical downstream effector of LPCAT1. GLUT3 deficiency impaired the proliferation and inflammation of psoriatic keratinocytes. LPCAT1 regulates GLUT3 in keratinocytes through NF-κB/signal transducer and activator of transcription 3 signaling, enhancing keratinocyte glycolysis and promoting proproliferative and proinflammatory effects. In addition, suppressing GLUT3 in mice alleviated imiquimod-induced dermatitis. Taken together, our study indicates the critical role of the LPCAT1-GLUT3 axis in psoriasis pathogenesis and proposes LPCAT1 or GLUT3 as a potential therapeutic target for psoriasis.

5.
Nat Commun ; 15(1): 600, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238417

ABSTRACT

Computational methods have been proposed to leverage spatially resolved transcriptomic data, pinpointing genes with spatial expression patterns and delineating tissue domains. However, existing approaches fall short in uniformly quantifying spatially variable genes (SVGs). Moreover, from a methodological viewpoint, while SVGs are naturally associated with depicting spatial domains, they are technically dissociated in most methods. Here, we present a framework (PROST) for the quantitative recognition of spatial transcriptomic patterns, consisting of (i) quantitatively characterizing spatial variations in gene expression patterns through the PROST Index; and (ii) unsupervised clustering of spatial domains via a self-attention mechanism. We demonstrate that PROST performs superior SVG identification and domain segmentation with various spatial resolutions, from multicellular to cellular levels. Importantly, PROST Index can be applied to prioritize spatial expression variations, facilitating the exploration of biological insights. Together, our study provides a flexible and robust framework for analyzing diverse spatial transcriptomic data.


Subject(s)
Gene Expression Profiling , Zygote Intrafallopian Transfer , Transcriptome/genetics , Cluster Analysis , Recognition, Psychology
6.
Phytother Res ; 38(2): 713-726, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38009260

ABSTRACT

Psoriasis, an immune-mediated chronic inflammatory skin disease, imposes a huge mental and physical burden on patients and severely affects their quality of life. Punicalagin (PU), the most abundant ellagitannin in pomegranates, has become a research hotspot owing to its diverse biological activities. However, its effects on psoriasis remain unclear. We explored the impact and molecular mechanism of PU on M5-stimulated keratinocyte cell lines and imiquimod (IMQ)-induced psoriasis-like skin inflammation in BABL/c mice using western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), hematoxylin and eosin (H&E) stain, immunohistochemistry, and immunofluorescent. Administration of PU-enriched pomegranate extract at dosages of 150 and 250 mg/kg/day markedly attenuated psoriatic severity, abrogated splenomegaly, and reduced IMQ-induced abnormal epidermal proliferation, CD4+ T-cell infiltration, and inflammatory factor expression. Moreover, PU could decrease expression levels of pro-inflammatory cytokines, such as IL-1ß, IL-1α, IL-6, IL-8, TNF-α, IL-17A, IL-22, IL-23A, and reactive oxygen species (ROS), followed by keratinocyte proliferation inhibition in the M5-stimulated cell line model of inflammation through inhibition of mitogen-activated protein kinases/extracellular regulated protein kinases (MAPK/ERK) and nuclear factor kappaB (NF-κB) signaling pathways. Our results indicate that PU may serve as a promising nutritional intervention for psoriasis by ameliorating cellular oxidative stress and inflammation.


Subject(s)
Psoriasis , Skin Diseases , Humans , Animals , Mice , NF-kappa B/metabolism , Imiquimod/adverse effects , Hydrolyzable Tannins/pharmacology , Hydrolyzable Tannins/therapeutic use , Reactive Oxygen Species/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Quality of Life , Psoriasis/chemically induced , Psoriasis/drug therapy , Skin , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Signal Transduction , Keratinocytes , Administration, Oral , Disease Models, Animal , Mice, Inbred BALB C
7.
Mol Carcinog ; 62(5): 613-627, 2023 05.
Article in English | MEDLINE | ID: mdl-36727626

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin malignancies, and its incidence rate is increasing worldwide. Proline-rich 11 (PRR11) has been reported to be involved in the occurrence and development of various tumors. However, the role of PRR11 in cSCC remains unknown. In the present study, we observed upregulated expression of PRR11 in cSCC tissues and cell lines. Knockdown of PRR11 in the cSCC cell lines A431 and SCL-1 inhibited cell proliferation by inducing cell cycle arrest during the G1/S phase transition, promoted cell apoptosis, and reduced cell migration and invasion in vitro. Conversely, overexpression of PRR11 promoted cell proliferation, decreased cell apoptosis, and enhanced cell migration and invasion. PRR11 knockdown also inhibited cSCC tumor growth in a mouse xenograft model. Mechanistic investigations by RNA sequencing revealed that 891 genes were differentially expressed genes between cells with PRR11 knockdown and control cells. Enrichment analysis of different genes showed that the epidermal growth factor receptor (EGFR) signaling pathway was the top enriched pathway. We further validated that PRR11 induced EGFR pathway activity, which contributed to cSCC progression. These data suggest that PRR11 may serve as a novel therapeutic target in cSCC.


Subject(s)
Carcinoma, Squamous Cell , Proteins , Skin Neoplasms , Animals , Humans , Mice , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation/genetics , ErbB Receptors/genetics , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Proteins/metabolism
8.
Nano Res ; 16(4): 5226-5236, 2023.
Article in English | MEDLINE | ID: mdl-36465522

ABSTRACT

Numerous therapeutic anti-tumor strategies have been developed in recent decades. However, their therapeutic efficacy is reduced by the intrinsic protective autophagy of tumors. Autophagy plays a key role in tumorigenesis and tumor treatment, in which the overproduction of reactive oxygen species (ROS) is recognized as the direct cause of protective autophagy. Only a few molecules have been employed as autophagy inhibitors in tumor therapy to reduce protective autophagy. Among them, hydroxychloroquine is the most commonly used autophagy inhibitor in clinics, but it is severely limited by its high therapeutic dose, significant toxicity, poor reversal efficacy, and nonspecific action. Herein, we demonstrate a reductive-damage strategy to enable tumor therapy by the inhibition of protective autophagy via the catalytic scavenging of ROS using porous nanorods of ceria (PN-CeO2) nanozymes as autophagy inhibitor. The antineoplastic effects of PN-CeO2 were mediated by its high reductive activity for intratumoral ROS degradation, thereby inhibiting protective autophagy and activating apoptosis by suppressing the activities of phosphatidylinositide 3-kinase/protein kinase B and p38 mitogen-activated protein kinase pathways in human cutaneous squamous cell carcinoma. Further investigation highlighted PN-CeO2 as a safe and efficient anti-tumor autophagy inhibitor. Overall, this study presents a reductive-damage strategy as a promising anti-tumor approach that catalytically inhibits autophagy and activates the intrinsic antioxidant pathways of tumor cells and also shows its potential for the therapy of other autophagy-related diseases. Electronic Supplementary Material: Supplementary material (cellular uptake of PN-CeO2, effects of PN-CeO2 on several common malignant tumor models, viability of HaCaT cells treated with PN-CeO2 at different concentrations, time-dependent body-weight curves of SCL-1 tumor-bearing nude mice, the biodistribution of Ce element in main tissues and tumors after injection of PN-CeO2, measurement of Ce element concentration in urine and feces samples, H&E-stained images of main organs, and measurement of liver and kidney function in mice after different treatment) is available in the online version of this article at 10.1007/s12274-022-5139-z.

9.
Sci Data ; 9(1): 684, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36357411

ABSTRACT

Cities in China are on the frontline of low-carbon transition which requires monitoring city-level emissions with low-latency to support timely climate actions. Most existing CO2 emission inventories lag reality by more than one year and only provide annual totals. To improve the timeliness and temporal resolution of city-level emission inventories, we present Carbon Monitor Cities-China (CMCC), a near-real-time dataset of daily CO2 emissions from fossil fuel and cement production for 48 major high-emission cities in China. This dataset provides territory-based emission estimates from 2020-01-01 to 2021-12-31 for five sectors: power generation, residential (buildings and services), industry, ground transportation, and aviation. CMCC is developed based on an innovative framework that integrates bottom-up inventory construction and daily emission estimates from sectoral activities and models. Annual emissions show reasonable agreement with other datasets, and uncertainty ranges are estimated for each city and sector. CMCC provides valuable daily emission estimates that enable low-latency mitigation monitoring for cities in China.


Subject(s)
Carbon Dioxide , Fossil Fuels , Carbon/analysis , Carbon Dioxide/analysis , China , Cities , Climate Change
10.
J Pers Med ; 12(8)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35893303

ABSTRACT

BACKGROUND: The aim of this study was to analyze and compare melanoma gene expression profiles in TCGA database through the application of different genes to explore the pathogenesis of melanoma. Furthermore, we confirmed the extent of the role of KYNU in melanoma and whether it can be a potential target for the diagnosis and treatment of melanoma. METHODS: The gene expression profiles of melanoma samples were downloaded from TCGA database, and matrix files were synthesized to screen differential genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis and GCDA broad institute were used to analyze common gene locus mutations and expression changes in melanoma, as well as methylation. In addition, the expression patterns of KYNU in melanoma were quantified by immunohistochemistry, Western blotting, qRT-PCR, software such as GEO DataSets and the Human Protein Atlas, and meta-analysis of skin diseases. KYNU was overexpressed in keratinocytes (HaCaT and HEKα) and melanoma cells (A375 and H1205-lu). CFDA-SE, Annexin V-PI double staining, and PI single staining were used to investigate the mechanism of KYNU in melanoma and its effects on melanoma proliferation, apoptosis, invasion, and migration. RESULTS: The main signaling pathways involved in melanoma were EGF/EGFR-RAS-BRAF-MEK-ERK-CyclinD1/CDK4, Ras-PI3K-PTEN-PKB/AKT, and p14/p16 (CDKN2A)-MDM2-p53-p21-cyclinD1/CDK4/6-Rb/E2F. Moreover, MITF, KIT, CDH1. NRAS, AKT1, EGFR, TP53, KIT, and CDK4 were elevated in melanoma, whereas PTEN, cAMP, and BCL2 were reduced in melanoma. The copy number of tumor-promoting genes increased, while the copy number of tumor suppressor genes decreased. Changes in the copy number of the above tumor genes enriched in chromosomes were found through SNP gene mutations. The genes whose expression was negatively regulated by DNA methylation in melanoma included KRT18, CDK2, JAK3, BCL2, MITF, MET, CXCL10, EGF, SOX10, SOCS3, and KIT. The mutation rate of KYNU was high according to TCGA database. The KYNU level was decreased in melanoma. Overexpression of KYNU can promote changes in apoptotic BCL-2, metabolic KYN, 3-HAA, invasion and migration MMP9, E-cadherin, and other related proteins in melanoma. Fluorescence staining and flow analysis showed that a slower proliferation rate led to a stronger fluorescence intensity. In melanoma tumor cells with a low expression of KYNU, overexpression of KYNU could promote tumor cell apoptosis. IL-10 induced immunoregulatory changes in melanoma. The expression of MMP9 and AMPK decreased in A375, but the change in BCL-2 was not obvious. The expression of BCL-2 decreased significantly in H1205-lu. A375 showed cell-cycle arrest, indicating that IL-10 could slow down the cell cycle of melanoma. CONCLUSIONS: These results provide insights into the pathologic mechanisms of melanoma target genes and KYNU as a biomarker and potential therapeutic factor for melanoma.

11.
BMC Infect Dis ; 22(1): 299, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35346084

ABSTRACT

BACKGROUND: This study explored disparities in characteristics and mortalities among four major transmission groups on antiretroviral therapy in northwest China as well as the survival impact of each transmission route. METHODS: We first examined disparities in demographics and clinical characteristics of the four transmission populations. Kaplan Meier analysis was subsequently conducted to compare survival rates among all groups. At last, Cox proportional hazards regression model was employed to analyze the survival impact of a transmission route among seven main categories of survival factors associated with all-cause mortalities. RESULTS: Survival analysis showed significant differences in all-cause, AIDS- and non-AIDS-related deaths among four HIV populations (all P < 0.05). Using homosexuals as the reference, Cox proportional hazards model further revealed that the risk of all-cause death for blood and plasma donors was significantly higher than that of the reference (aHR: 5.21, 95%CI: 1.54-17.67); the risk of non-AIDS-related death for heterosexuals (aHR: 2.07, 95%CI: 1.01-4.20) and that for blood and plasma donors (aHR: 19.81, 95%CI: 5.62-69.89) were both significantly higher than that of the reference. CONCLUSIONS: Significant disparities were found in characteristics and mortalities among the four transmission groups where mortality disparities were mainly due to non-AIDS-related death. Suggestions are provided for each group to improve their survivorship.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV Infections , Acquired Immunodeficiency Syndrome/drug therapy , HIV Infections/drug therapy , Humans , Male , Proportional Hazards Models , Retrospective Studies , Survival Analysis
12.
J Invest Dermatol ; 142(2): 303-313.e9, 2022 02.
Article in English | MEDLINE | ID: mdl-34358528

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC) is the second most common form of skin cancer. LPCAT1, a lysophosphatidylcholine acyltransferase, takes a center stage in membrane lipid remodeling. LPCAT1 is elevated in several cancers and contributes to cancer development. However, its role and molecular mechanisms in cSCC remain to be elucidated. In this study, we found that LPCAT1 was upregulated in cSCC tissues and in cell lines. In vitro, loss-of-function and gain-of-function experiments demonstrated that LPCAT1 facilitated cSCC cell proliferation, protected cells against apoptosis, accelerated epithelial‒mesenchymal transition, and enhanced cell metastasis. Mechanistically, LPCAT1 regulated EGFR signaling. The oncogenic effect of LPCAT1 was mediated by EGFR/protein kinase B and EGFR/p38MAPK pathways in cSCC. Using the xenograft mouse model, we consolidated the results mentioned earlier. In conclusion, LPCAT1 contributed to cSCC progression through EGFR-mediated protein kinase B and p38MAPK signaling pathways. LPCAT1 may serve as a target for therapeutic intervention in cSCC.


Subject(s)
1-Acylglycerophosphocholine O-Acyltransferase/genetics , Carcinoma, Squamous Cell/genetics , Gene Expression Regulation, Neoplastic , Skin Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Animals , Carcinoma, Squamous Cell/pathology , Case-Control Studies , Cell Line, Tumor , Cell Proliferation/genetics , ErbB Receptors/metabolism , Female , Healthy Volunteers , Humans , MAP Kinase Signaling System/genetics , Male , Mice , Middle Aged , Neoplasm Invasiveness/genetics , Proto-Oncogene Proteins c-akt/metabolism , Skin/pathology , Skin Neoplasms/pathology , Up-Regulation , Xenograft Model Antitumor Assays , Young Adult , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...