Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(19): 9873-9891, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38695884

ABSTRACT

Inspired by nature, superhydrophobic surfaces have been widely studied. Usually the wettability of a superhydrophobic surface is quantified by the macroscopic contact angle. However, this method has various limitations, especially for precision micro devices with superhydrophobic surfaces, such as biomimetic artificial compound eyes and biomimetic water strider robots. These precision micro devices with superhydrophobic surfaces proposed a higher demand for the quantification of contact angles, requiring contact angle quantification technology to have micrometer-scale measurement capabilities. In this review, it is proposed to achieve micrometer-scale quantification of superhydrophobic surface contact angles through droplet adhesion characteristics (adhesion force and contact radius). Existing contact angle quantification techniques and droplet characteristics' measurement methods were described in detail. The advancement of micrometer-scale quantification technology for the contact angle of superhydrophobic surfaces will enhance our understanding of superhydrophobic surfaces.

2.
Langmuir ; 39(14): 5179-5186, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36989060

ABSTRACT

When a droplet contacts a solid surface, the liquid spreads over the solid surface to minimize the total surface energy. This phenomenon is widespread in industrial production and nature, so research on droplet spreading is of great significance. Here, the adhesion force and the spreading radius during droplet spreading can be quantified using a highly sensitive photoelectric method. It is possible to study droplet spreading from two dimensions at the microscale. The adhesion force is measured by an optical lever, and the spreading radius is measured by an ultrafast electrical method. The measurement method allows the force resolution and the space-time resolution to reach the nanonewton lever and the nanosecond lever, respectively. We obtain the maximum spreading radius and the maximum adhesion force during short-time spreading through our technique. Moreover, we numerically simulate the droplet spreading process through the lattice Boltzmann solver and confirm the observed results. This study provides a new experimental technique for studying droplet spreading dynamics from multiple perspectives, which can deepen our understanding of droplet spreading and provide guidance for the development of new techniques.

3.
Opt Express ; 30(25): 44518-44532, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36522875

ABSTRACT

Augmented reality (AR) is desperately needed in the Metaverse. The geometrical waveguide receives increased attention in AR technology as achieving high resolution, full-color display, etc. However, the stray light and ghost image problems resulting from the parallelism errors severely deteriorate the imaging quality. According to the light propagation of the waveguide, a measuring system based on the combination of the autocollimator and the testing telescope (CAT) method was proposed to measure the parallelism errors of the partially reflective mirror array (PRMA). The results indicated that this method could measure the parallelism errors precisely with the maximum repeatability of 0.63 ' ' . The method could decouple the coupling of the parallelism errors of the PRMA and the substrate surfaces to imaging quality effectively. The precise parallelism measuring is expected to contribute to mass production and low cost by promoting the waveguide design and fabrication.

4.
Appl Opt ; 61(22): G9-G14, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36255858

ABSTRACT

A novel, to the best of our knowledge, bionic coaxial micro-displacement sensor based on the shadow method is developed and experimentally demonstrated inspired by the water strider walking on the water. The water is used as the sensitive element to measure the micro- displacement. A meniscus is formed by the superhydrophobic circular plate subjected to a coaxial displacement excitation. Then a shadow is formed because of the refraction when the parallel light illuminates the meniscus. A maximum coaxial displacement sensitivity of 62 nm/pixel over the displacement range of 50 µm is achieved experimentally. The linearity error in the measurement range was 1.58%. Therefore, it is expected that this displacement sensor can be used in many important ultraprecision measurement fields because of the advantages of the easy structure and high resolution.


Subject(s)
Transducers , Water
5.
J Vis Exp ; (188)2022 10 07.
Article in English | MEDLINE | ID: mdl-36282712

ABSTRACT

The precision measurement of micro displacement is important in scientific and industrial fields. However, it is a tough challenge due to the complex design and the high cost of measuring instruments. Inspired by the shadow formed from water striders walking on a water surface under sunlight, a micro-displacement measurement method was proposed. Water strider legs with superhydrophobic properties bend the water surface. The curved surface of the water refracts sunlight, creating a shadow with a bright edge at the bottom of the pond. The shadow size is generally larger than the indentation depth of the legs from the water surface. In the micro-displacement measurement system, the applied displacement is proportional to the change in the diameter of the shadow. The presented study proposes a micro-displacement measurement procedure based on this shadow technique. The displacement sensitivity can reach 10.0 nm/pixel in the range of 5 µm. This system is simple to construct, low cost, and has high precision with good linear performance. The method provides a convenient additional option to measure micro-displacement.


Subject(s)
Water , Water/chemistry
6.
Langmuir ; 38(29): 8854-8861, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35834741

ABSTRACT

Understanding the high water adhesion of rose petals is of great significance in artificial surface design. With all-atom molecular dynamics simulation, the wettability of nanoscale wrinkles was explored and compared to that of nanoscale strips with favorable hydrophobicity. The dewetting and wetting of gaps between nanoscale structures represent the Cassie-Baxter (CB) and Wenzel (WZ) states of the macroscopic droplet deposited on the textured surface, respectively. We uncovered the intermediate state, which is different from the CB and WZ states for wrinkles. Structures and free-energy profiles of metastable and transition states under various pressures were also investigated. Moreover, free-energy barriers for the (de)wetting transitions were quantified. On this basis, the roles of pressure and the unique structures of nanoscale wrinkles in the high water adhesion of rose petals were identified.

7.
J Vis Exp ; (148)2019 06 14.
Article in English | MEDLINE | ID: mdl-31259893

ABSTRACT

The goal of this paper is to investigate the interaction force between droplets and super-hydrophobic substrates in the air. A measurement system based on an optical lever method is designed. A millimetric cantilever is used as a force sensitive component in the measurement system. Firstly, the force sensitivity of the optical lever is calibrated using electrostatic force, which is the critical step in measuring interaction force. Secondly, three super-hydrophobic substrates with different grid fractions are prepared with nanoparticles and copper grids. Finally, the interaction forces between droplets and super-hydrophobic substrates with different grid fractions are measured by the system. This method can be used to measure the force on the scale of sub-micronewton with a resolution on the scale of nanonewton. The in-depth study of the contact process of droplets and super-hydrophobic structures can help to improve the production efficiency in coating, film and printing. The force measurement system designed in this paper can also be used in other fields of microforce measurement.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Optical Devices , Surface Properties
8.
J Vis Exp ; (138)2018 08 03.
Article in English | MEDLINE | ID: mdl-30124649

ABSTRACT

This study aimed to make an explanation for the phenomenon in nature that water strider usually jumps or glides on the water surface easily but quickly, with its peak locomotion speed reaching 150 cm/s. First of all, we observed the microstructure and hierarchy of water strider legs using the scanning electron microscope. On the basis of the observed morphology of the legs, a theoretical model of the detachment from water surface was established, which explained water striders' capability to slide on water surface effortlessly in terms of energy reduction. Secondly, a dynamic force measurement system was devised using the PVDF film sensor with excellent sensitivity, which could detect the whole interaction process. Subsequently, a single leg in contact with water was pulled upward at different speeds, and the adhesion force was measured at the same time. The results of the departing experiment suggested a deep understanding of the fast jumping of water striders.


Subject(s)
Polyvinyls/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...