Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 11: 1359421, 2024.
Article in English | MEDLINE | ID: mdl-38840631

ABSTRACT

Porcine circovirus disease (PCV) causes substantial economic losses in the pig industry, primarily from porcine circovirus type 2 (PCV2) and porcine circovirus type 3 (PCV3). Novel vaccines are necessary to prevent and control PCV infections. PCV coat proteins are crucial for eliciting immunogenic proteins that induce the production of antibodies and immune responses. A vaccine platform utilizing Semliki Forest virus RNA replicons expressing vesicular stomatitis virus glycoprotein (VSV-G), was recently developed. This platform generates virus-like vesicles (VLVs) containing VSV-G exclusively, excluding other viral structural proteins. In our study, we developed a novel virus-like vesicle vaccine by constructing recombinant virus-like vesicles (rVLVs) that also express EGFP. These rVLVs were created using the RNA replicon of Venezuelan equine encephalomyelitis (VEEV) and New Jersey serotype VSV-G. The rVLVs underwent characterization and safety evaluation in vitro. Subsequently, rVLVs expressing PCV2d-Cap and PCV3-Cap proteins were constructed. Immunization of C57 mice with these rVLVs led to a significant increase in anti-porcine circovirus type 2 and type 3 capsid protein antibodies in mouse serum. Additionally, a cellular immune response was induced, as evidenced by high production of IFN-γ and IL-4 cytokines. Overall, this study demonstrates the feasibility of developing a novel porcine circovirus disease vaccine based on rVLVs.

2.
Plant Physiol Biochem ; 210: 108577, 2024 May.
Article in English | MEDLINE | ID: mdl-38579542

ABSTRACT

The JASMONATE ZIM DOMAIN (JAZ) proteins are a key inhibitors of the jasmonic acid (JA) signaling pathway that play an important role in the regulation of plant growth and development and environmental stress responses. However, there is no systematic identification and functional analysis of JAZ gene family members in sugarcane. In this study, a total of 49 SsJAZ genes were identified from the wild sugarcane species Saccharum spontaneum genome that were unevenly distributed on 13 chromosomes. Phylogenetic analysis showed that all SsJAZ members can be divided into six groups, and most of the SsJAZ genes contained photoreactive and ABA-responsive elements. RNA-seq analysis revealed that SsJAZ1-1/2/3/4 and SsJAZ7-1 were significantly upregulated under drought stress. The transcript level of ScJAZ1 which is the homologous gene of SsJAZ1 in modern sugarcane cultivars was upregulated by JA, PEG, and abscisic acid (ABA). Moreover, ScJAZ1 can interact with three other JAZ proteins to form heterodimers. The spatial and temporal expression analysis showed that SsJAZ2-1/2/3/4 were highly expressed in different tissues and growth stages and during the day-night rhythm between 10:00 and 18:00. Overexpression of ScJAZ2 in Arabidopsis accelerated flowering through activating the expression of AtSOC1, AtFT, and AtLFY. Moreover, the transcription level of ScJAZ2 was about 30-fold in the early-flowering sugarcane variety than that of the non-flowering variety, indicating ScJAZ2 positively regulated flowering. This first systematic analysis of the JAZ gene family and function analysis of ScJAZ1/2 in sugarcane provide key candidate genes and lay the foundation for sugarcane breeding.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Plant Proteins , Saccharum , Saccharum/genetics , Saccharum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/genetics , Phylogeny , Multigene Family , Droughts , Oxylipins/metabolism , Stress, Physiological/genetics , Cyclopentanes/metabolism
3.
Inorg Chem ; 60(17): 13080-13090, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34357773

ABSTRACT

A series of phosphinecarbonylpalladium and -nickel catalysts bearing various substituents on the ligand backbone were prepared, characterized, and used in ethylene polymerization and copolymerization with polar monomers. The Pd and Ni catalysts can achieve high activities as well as high polymer molecular weights in both ethylene polymerization and copolymerization with polar monomers. The electron-donating group from the carbonyl side can effectively increase the polymer molecular weights. Utilization of a cyclic backbone structure can increase the catalytic activities at the expense of the polymer molecular weights. Moreover, installation of a pyridyl moiety in the ligand backbone can enable Lewis acid responsiveness and can enhance the polymerization activities. These results suggest the importance of the ligand backbone for the properties of catalysts in ethylene polymerization and copolymerization reactions.

4.
Chem Commun (Camb) ; 55(26): 3769-3772, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30864581

ABSTRACT

A palladium-catalyzed enantioselective coupling of 2,5-cyclohexadienyl-substituted aryl iodides and carbon or heteroatom nucleophiles is described. The reaction proceeded via a tandem asymmetric Heck insertion and Tsuji-Trost allylation, enabling the rapid construction of valuable chiral tetrahydrofluorenes by using a chiral H8-BINOL-based phosphoramidite ligand.

5.
Org Lett ; 20(7): 1871-1874, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29533070

ABSTRACT

Asymmetric total synthesis of (+)-sphaerodiol (2) has been achieved. A key step is an intramolecular [2 + 2] cycloaddition of alkyl(phenylthio)ketene for rapid assembly of the decalin ring.

SELECTION OF CITATIONS
SEARCH DETAIL
...