Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 297
Filter
1.
Adv Colloid Interface Sci ; 331: 103242, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38964196

ABSTRACT

Proteins in ionic liquids (ILs) and deep eutectic solvents (DESs) have gained significant attention due to their potential applications in various fields, including biocatalysis, bioseparation, biomolecular delivery, and structural biology. Scattering approaches including dynamic light scattering (DLS) and small-angle X-ray and neutron scattering (SAXS and SANS) have been used to understand the solution behavior of proteins at the nanoscale and microscale. This review provides a thorough exploration of the application of these scattering techniques to elucidate protein properties in ILs and DESs. Specifically, the review begins with the theoretical foundations of the relevant scattering approaches and describes the essential solvent properties of ILs and DESs linked to scattering such as refractive index, scattering length density, ion-pairs, liquid nanostructure, solvent aggregation, and specific ion effects. Next, a detailed introduction is provided on protein properties such as type, concentration, size, flexibility and structure as observed through scattering methodologies. This is followed by a review of the literature on the use of scattering for proteins in ILs and DESs. It is highlighted that enhanced data analysis and modeling tools are necessary for assessing protein flexibility and structure, and for understanding protein hydration, aggregation and specific ion effects. It is also noted that complementary approaches are recommended for comprehensively understanding the behavior of proteins in solution due to the complex interplay of factors, including ion-binding, dynamic hydration, intermolecular interactions, and specific ion effects. Finally, the challenges and potential research directions for this field are proposed, including experimental design, data analysis approaches, and supporting methods to obtain fundamental understandings of complex protein behavior and protein systems in solution. We envisage that this review will support further studies of protein interface science, and in particular studies on solvent and ion effects on proteins.

2.
Nutr Diabetes ; 14(1): 42, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858392

ABSTRACT

BACKGROUND: Vitamin D was shown to directly exert a protective effect on diabetic kidney disease (DKD) in our previous study. However, whether it has an effect on perirenal adipose tissue (PRAT) or the intestinal flora and its metabolites (trimethylamine N-oxide, TMAO) is unclear. METHODS: DKD mice were received different concentrations of 1,25-(OH)2D3 for 2 weeks. Serum TNF-α levels and TMAO levels were detected. 16S rRNA sequencing was used to analyze gut microbiota. qPCR was used to detect the expression of TLR4, NF-Κb, PGC1α, and UCP-1 in kidney and adipose tissue. Histological changes in kidney and perirenal adipose tissue were observed using HE, PAS, Masson and oil red staining. Immunofluorescence and immunohistochemistry were used to detect the expression of VDR, PGC1α, podocin, and UCP-1 in kidney and adipose tissue. Electron microscopy was used to observe the pathological changes in the kidney. VDR knockout mice were constructed to observe the changes in the gut and adipose tissue, and immunofluorescence and immunohistochemistry were used to detect the expression of UCP-1 and collagen IV in the kidney. RESULTS: 1,25-(OH)2D3 could improve the dysbiosis of the intestinal flora of mice with DKD, increase the abundance of beneficial bacteria, decrease the abundance of harmful bacteria, reduce the pathological changes in the kidney, reduce fat infiltration, and downregulate the expression of TLR4 and NF-κB in kidneys. The serum TMAO concentration in mice with DKD was significantly higher than that of the control group, and was significantly positively correlated with the urine ACR. In addition, vitamin D stimulated the expression of the surface markers PGC1α, UCP-1 and VDR in the PRAT in DKD mice, and TMAO downregulated the expression of PRAT and renal VDR. CONCLUSIONS: The protective effect of 1,25-(OH)2D3 in DKD mice may affect the intestinal flora and its related metabolite TMAO on perirenal fat and kidneys.


Subject(s)
Diabetic Nephropathies , Gastrointestinal Microbiome , Kidney , Methylamines , Mice, Knockout , Receptors, Calcitriol , Animals , Gastrointestinal Microbiome/drug effects , Mice , Kidney/metabolism , Methylamines/metabolism , Methylamines/blood , Male , Receptors, Calcitriol/metabolism , Diabetic Nephropathies/metabolism , Adipose Tissue/metabolism , Mice, Inbred C57BL , Vitamin D/pharmacology , Calcitriol/pharmacology
3.
Br J Cancer ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918556

ABSTRACT

BACKGROUND: This study aims to develop a stacking model for accurately predicting axillary lymph node (ALN) response to neoadjuvant chemotherapy (NAC) using longitudinal MRI in breast cancer. METHODS: We included patients with node-positive breast cancer who received NAC following surgery from January 2012 to June 2022. We collected MRIs before and after NAC, and extracted radiomics features from the tumour, peritumour, and ALN regions. The Mann-Whitney U test, least absolute shrinkage and selection operator, and Boruta algorithm were used to select features. We utilised machine learning techniques to develop three single-modality models and a stacking model for predicting ALN response to NAC. RESULTS: This study consisted of a training cohort (n = 277), three external validation cohorts (n = 313, 164, and 318), and a prospective cohort (n = 81). Among the 1153 patients, 60.62% achieved ypN0. The stacking model achieved excellent AUCs of 0.926, 0.874, and 0.862 in the training, external validation, and prospective cohort, respectively. It also showed lower false-negative rates (FNRs) compared to radiologists, with rates of 14.40%, 20.85%, and 18.18% (radiologists: 40.80%, 50.49%, and 63.64%) in three cohorts. Additionally, there was a significant difference in disease-free survival between high-risk and low-risk groups (p < 0.05). CONCLUSIONS: The stacking model can accurately predict ALN status after NAC in breast cancer, showing a lower false-negative rate than radiologists. TRIAL REGISTRATION NUMBER: The clinical trial numbers were NCT03154749 and NCT04858529.

6.
Sci China Life Sci ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38805064

ABSTRACT

Centromeres play a vital role in cellular division by facilitating kinetochore assembly and spindle attachments. Despite their conserved functionality, centromeric DNA sequences exhibit rapid evolution, presenting diverse sizes and compositions across species. The functional significance of rye centromeric DNA sequences, particularly in centromere identity, remains unclear. In this study, we comprehensively characterized the sequence composition and organization of rye centromeres. Our findings revealed that these centromeres are primarily composed of long terminal repeat retrotransposons (LTR-RTs) and interspersed minisatellites. We systematically classified LTR-RTs into five categories, highlighting the prevalence of younger CRS1, CRS2, and CRS3 of CRSs (centromeric retrotransposons of Secale cereale) were primarily located in the core centromeres and exhibited a higher association with CENH3 nucleosomes. The minisatellites, mainly derived from retrotransposons, along with CRSs, played a pivotal role in establishing functional centromeres in rye. Additionally, we observed the formation of R-loops at specific regions of CRS1, CRS2, and CRS3, with both rye pericentromeres and centromeres exhibiting enrichment in R-loops. Notably, these R-loops selectively formed at binding regions of the CENH3 nucleosome in rye centromeres, suggesting a potential role in mediating the precise loading of CENH3 to centromeres and contributing to centromere specification. Our work provides insights into the DNA sequence composition, distribution, and potential function of R-loops in rye centromeres. This knowledge contributes valuable information to understanding the genetics and epigenetics of rye centromeres, offering implications for the development of synthetic centromeres in future plant modifications and beyond.

7.
World J Gastroenterol ; 30(16): 2179-2183, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38690018

ABSTRACT

In this editorial we comment on the article published in the recent issue of the World journal of Gastroenterology. We focus specifically on the mechanisms un-derlying the effects of fecal microbiota transplantation (FMT) for irritable bowel syndrome (IBS), the factors which affect the outcomes of FMT in IBS patients, and challenges. FMT has emerged as a efficacious intervention for clostridium difficile infection and holds promise as a therapeutic modality for IBS. The utilization of FMT in the treatment of IBS has undergone scrutiny in numerous randomized controlled trials, yielding divergent outcomes. The current frontier in this field seeks to elucidate these variations, underscore the existing knowledge gaps that necessitate exploration, and provide a guideline for successful FMT imple-mentation in IBS patients. At the same time, the application of FMT as a treatment for IBS confronts several challenges.


Subject(s)
Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Irritable Bowel Syndrome , Irritable Bowel Syndrome/therapy , Irritable Bowel Syndrome/microbiology , Fecal Microbiota Transplantation/methods , Humans , Treatment Outcome , Feces/microbiology , Randomized Controlled Trials as Topic , Clostridioides difficile/pathogenicity , Clostridium Infections/therapy , Clostridium Infections/microbiology
8.
Eur Radiol ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724768

ABSTRACT

OBJECTIVES: Developing a deep learning radiomics model from longitudinal breast ultrasound and sonographer's axillary ultrasound diagnosis for predicting axillary lymph node (ALN) response to neoadjuvant chemotherapy (NAC) in breast cancer. METHODS: Breast cancer patients undergoing NAC followed by surgery were recruited from three centers between November 2016 and December 2022. We collected ultrasound images for extracting tumor-derived radiomics and deep learning features, selecting quantitative features through various methods. Two machine learning models based on random forest were developed using pre-NAC and post-NAC features. A support vector machine integrated these data into a fusion model, evaluated via the area under the curve (AUC), decision curve analysis, and calibration curves. We compared the fusion model's performance against sonographer's diagnosis from pre-NAC and post-NAC axillary ultrasonography, referencing histological outcomes from sentinel lymph node biopsy or axillary lymph node dissection. RESULTS: In the validation cohort, the fusion model outperformed both pre-NAC (AUC: 0.899 vs. 0.786, p < 0.001) and post-NAC models (AUC: 0.899 vs. 0.853, p = 0.014), as well as the sonographer's diagnosis of ALN status on pre-NAC and post-NAC axillary ultrasonography (AUC: 0.899 vs. 0.719, p < 0.001). Decision curve analysis revealed patient benefits from the fusion model across threshold probabilities from 0.02 to 0.98. The model also enhanced sonographer's diagnostic ability, increasing accuracy from 71.9% to 79.2%. CONCLUSION: The deep learning radiomics model accurately predicted the ALN response to NAC in breast cancer. Furthermore, the model will assist sonographers to improve their diagnostic ability on ALN status before surgery. CLINICAL RELEVANCE STATEMENT: Our AI model based on pre- and post-neoadjuvant chemotherapy ultrasound can accurately predict axillary lymph node metastasis and assist sonographer's axillary diagnosis. KEY POINTS: Axillary lymph node metastasis status affects the choice of surgical treatment, and currently relies on subjective ultrasound. Our AI model outperformed sonographer's visual diagnosis on axillary ultrasound. Our deep learning radiomics model can improve sonographers' diagnosis and might assist in surgical decision-making.

9.
Article in English | MEDLINE | ID: mdl-38740543

ABSTRACT

BACKGROUND AND AIM: Extraintestinal manifestations (EIMs) pose a significant threat in inflammatory bowel disease (IBD) patients. Vedolizumab (VDZ) primarily affects the gastrointestinal tract. However, its impact on EIMs remains uncertain. Therefore, we conducted this meta-analysis to examine the effects of VDZ on EIMs during treatment. METHODS: Relevant studies were identified by conducting thorough searches across electronic databases, including PubMed, Ovid Embase, Medline, and Cochrane CENTRAL. Primary outcomes focused on the proportion of patients with resolution for pre-existing EIMs in IBD patients receiving VDZ. Secondary outcomes included the proportion of patients with EIM exacerbations and new onset EIMs during VDZ treatment. RESULTS: Our meta-analysis encompassed 21 studies. The proportion of patients with resolution of pre-existing EIMs in VDZ-treated IBD patients was 39% (150/386; 95% confidence interval [CI] 0.31-0.48). The proportion of patients with EIM exacerbations occurred at a rate of 28% (113/376; 95% CI 0.05-0.50), while new onset EIMs had a rate of 15% (397/2541; 95% CI 0.10-0.20). Subgroup analysis revealed a 40% (136/337) proportion of patients with resolution for articular-related EIMs and a 50% (9/18) rate for erythema nodosum. Exacerbation rates for arthritis/arthralgia, erythema nodosum/pyoderma gangrenosum, and aphthous stomatitis during VDZ use were 28% (102/328), 18% (7/38), and 11% (3/28), respectively. The incidence rate of newly developed EIMs during treatment was 11% (564/4839) for articular-related EIMs, with other EIMs below 2%. CONCLUSION: VDZ demonstrates efficacy in skin-related EIMs like erythema nodosum and joint-related EIMs including arthritis, arthralgia, spondyloarthritis, and peripheral joint diseases. Some joint and skin-related EIMs may experience exacerbation during VDZ therapy.

10.
Sci China Life Sci ; 67(7): 1479-1488, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38639838

ABSTRACT

Non-B-form DNA differs from the classic B-DNA double helix structure and plays a crucial regulatory role in replication and transcription. However, the role of non-B-form DNA in centromeres, especially in polyploid wheat, remains elusive. Here, we systematically analyzed seven non-B-form DNA motif profiles (A-phased DNA repeat, direct repeat, G-quadruplex, inverted repeat, mirror repeat, short tandem repeat, and Z-DNA) in hexaploid wheat. We found that three of these non-B-form DNA motifs were enriched at centromeric regions, especially at the CENH3-binding sites, suggesting that non-B-form DNA may create a favorable loading environment for the CENH3 nucleosome. To investigate the dynamics of centromeric non-B form DNA during the alloploidization process, we analyzed DNA secondary structure using CENH3 ChIP-seq data from newly formed allotetraploid wheat and its two diploid ancestors. We found that newly formed allotetraploid wheat formed more non-B-form DNA in centromeric regions compared with their parents, suggesting that non-B-form DNA is related to the localization of the centromeric regions in newly formed wheat. Furthermore, non-B-form DNA enriched in the centromeric regions was found to preferentially form on young LTR retrotransposons, explaining CENH3's tendency to bind to younger LTR. Collectively, our study describes the landscape of non-B-form DNA in the wheat genome, and sheds light on its potential role in the evolution of polyploid centromeres.


Subject(s)
Centromere , DNA, Plant , Polyploidy , Triticum , Triticum/genetics , Triticum/metabolism , Centromere/metabolism , Centromere/genetics , DNA, Plant/genetics , DNA, Plant/metabolism , Chromosomes, Plant/genetics , Nucleic Acid Conformation
11.
Ann Surg ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557792

ABSTRACT

OBJECTIVE: To develop an artificial intelligence (AI) system for the early prediction of residual cancer burden (RCB) scores during neoadjuvant chemotherapy (NAC) in breast cancer. SUMMARY BACKGROUND DATA: RCB III indicates drug resistance in breast cancer, and early detection methods are lacking. METHODS: This study enrolled 1048 patients with breast cancer from four institutions, who were all receiving NAC. Magnetic resonance images were collected at the pre- and mid-NAC stages, and radiomics and deep learning features were extracted. A multitask AI system was developed to classify patients into three groups (RCB 0-I, II, and III ) in the primary cohort (PC, n=335). Feature selection was conducted using the Mann-Whitney U- test, Spearman analysis, least absolute shrinkage and selection operator regression, and the Boruta algorithm. Single-modality models were developed followed by model integration. The AI system was validated in three external validation cohorts. (EVCs, n=713). RESULTS: Among the patients, 442 (42.18%) were RCB 0-I, 462 (44.08%) were RCB II and 144 (13.74%) were RCB III. Model-I achieved an area under the curve (AUC) of 0.975 in the PC and 0.923 in the EVCs for differentiating RCB III from RCB 0-II. Model-II distinguished RCB 0-I from RCB II-III, with an AUC of 0.976 in the PC and 0.910 in the EVCs. Subgroup analysis confirmed that the AI system was consistent across different clinical T stages and molecular subtypes. CONCLUSIONS: The multitask AI system offers a noninvasive tool for the early prediction of RCB scores in breast cancer, supporting clinical decision-making during NAC.

12.
J Adv Res ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38631431

ABSTRACT

BACKGROUND: The treatment of metabolic system, cardiovascular system, and nervous system diseases remains to be explored. In the internal environment of organisms, the metabolism of substances such as carbohydrates, lipids and proteins (including biohormones and enzymes) exhibit a certain circadian rhythm to maintain the energy supply and material cycle needed for the normal activities of organisms. As a key factor for the health of organisms, the circadian rhythm can be disrupted by pathological conditions, and this disruption accelerates the progression of diseases and results in a vicious cycle. The current treatments targeting the circadian rhythm for the treatment of metabolic system, cardiovascular system, and nervous system diseases have certain limitations, and the identification of safer and more effective circadian rhythm regulators is needed. AIM OF THE REVIEW: To systematically assess the possibility of using the biological clock as a natural product target for disease intervention, this work reviews a range of evidence on the potential effectiveness of natural products targeting the circadian rhythm to protect against diseases of the metabolic system, cardiovascular system, and nervous system. This manuscript focuses on how natural products restore normal function by affecting the amplitude of the expression of circadian factors, sleep/wake cycles and the structure of the gut microbiota. KEY SCIENTIFIC CONCEPTS OF THE REVIEW: This work proposes that the circadian rhythm, which is regulated by the amplitude of the expression of circadian rhythm-related factors and the sleep/wake cycle, is crucial for diseases of the metabolic system, cardiovascular system and nervous system and is a new target for slowing the progression of diseases through the use of natural products. This manuscript provides a reference for the molecular modeling of natural products that target the circadian rhythm and provides a new perspective for the time-targeted action of drugs.

13.
Biology (Basel) ; 13(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38666826

ABSTRACT

Grass carp (Ctenopharyngodon idella) and barbel chub (Squaliobarbus curriculus)-both Leuciscinae subfamily species-demonstrate differences in grass carp reovirus (GCRV) infection resistance. We infected barbel chubs with type II GCRV and subjected their liver, spleen, head kidney, and trunk kidney samples to investigate anti-GCRV immune mechanisms via RNA sequencing and quantitative real-time polymerase chain reaction (qRT-PCR). We identified 139, 970, 867, and 2374 differentially expressed genes (DEGs) in the liver, spleen, head kidney, and trunk kidney, respectively. Across all four tissues, gene ontology analysis revealed significant immune response-related DEG enrichment, and the Kyoto Encyclopedia of Genes and Genomes analysis revealed pattern recognition receptor (PRR) and cytokine-related pathway enrichment. We noted autophagy pathway enrichment in the spleen, head kidney, and trunk kidney; apoptosis pathway enrichment in the spleen and trunk kidney; and complement- and coagulation-cascade pathway enrichment in only the spleen. Comparative transcriptome analysis between GCRV-infected barbel chubs and uninfected barbel chubs comprehensively revealed that PRR, cytokine-related, complement- and coagulation-cascade, apoptosis, and autophagy pathways are potential key factors influencing barbel chub resistance to GCRV infection. qRT-PCR validation of 11 immune-related DEGs confirmed our RNA-seq data's accuracy. These findings provide a theoretical foundation and empirical evidence for the understanding of GCRV infection resistance in barbel chub and hybrid grass carp-barbel chub breeding.

14.
Zhongguo Zhong Yao Za Zhi ; 49(3): 653-660, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621869

ABSTRACT

Quorum sensing system regulates the expression of genes related to bacterial growth, metabolism and other behaviors by sensing bacterial density, and controls the unified action of the entire bacterial population. This mechanism can ensure the normal secretion of bacterial metabolites and the stability of the biofilm microenvironment, providing protection for the formation of biofilms and the normal growth and reproduction of bacteria. Traditional Chinese medicine, capable of quorum sensing inhibition, can inhibit the formation of bacterial biofilms, reduce bacterial resistance, and enhance the anti-infection ability of antibiotics when combined with antibiotics. In recent years, the combination of traditional Chinese and Western medicine in the treatment of drug-resistant bacterial infections has become a research hotspot. Starting with the associations between quorum sensing, biofilm and drug-resistant bacteria, this paper reviews the relevant studies about the combined application of traditional Chinese medicines as quorum sensing inhibitors with antibiotics in the treatment of drug-resistant bacteria. This review is expected to provide ideas for the development of new clinical treatment methods and novel anti-infection drugs.


Subject(s)
Bacterial Infections , Quorum Sensing , Humans , Quorum Sensing/genetics , Medicine, Chinese Traditional , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , Biofilms , Bacterial Infections/drug therapy
15.
Medicine (Baltimore) ; 103(15): e37643, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608104

ABSTRACT

To investigate the status of the drug-resistant tuberculosis (DR-TB) among children in Sichuan, and to find out the risk factors and high-risk population related to drug resistance among children. The clinical data of tuberculosis patients ≤14 years old with culture-confirmed tuberculosis hospitalized in Chengdu Public Health Clinical Center from January 2013 through December 2022 were collected. Clinical data such as gender, age, ethnicity, history of anti-TB treatment, history of exposure to tuberculosis, nutritional status, and specific drug resistance of the children were collected and recorded. The drug resistance of children in different age groups (0-4 years old, 5-9 years old, 10-14 years old) and different periods (2013-2017 and 2018-2022) were grouped and compared. Logistic regression analysis was to analyze analysis of risk factors of drug resistance in children. A total of 438 children with culture-confirmed tuberculosis were screened. Among them, 26.19% (11/42) were 0 to 4 years old, 33.33% (22/66) were 5 to 9 years old, and 36.67% (121/330) were 10 to 14 years old among the resistant children. There was no statistically significant difference in the resistance rate among the 3 groups (P = .385). The proportions of DR-TB, monoresistant tuberculosis, polydrug-resistant tuberculosis were decreased during 2019 to 2022 compared with 2013 to 2017 (P < .0001). The resistance rates of drug resistant, monoresistant, polydrug-resistant, isoniazid-resistant, and rifampicin resistant during 2018 to 2022 were decreased compared with those from 2013 to 2017 (P < .05), but the multi-drug resistance rate was not decreased (P = .131, without statistical difference). The results of logistic regression analysis showed that male gender OR = 1.566 (95% CI 1.035-2.369), a history of antituberculosis therapy OR = 4.049 (95% CI 1.442-11.367), and pulmonary and extrapulmonary tuberculosis OR = 7.335 (95% CI 1.401-38.392) were risk factors for the development of drug resistance; but fever OR = 0.581 (95% CI 0.355-0.950) was Protective factor. The total drug resistance rate of children in Sichuan showed a downward trend, but the rate of multi-drug-resistant tuberculosis was still at a high level, and the form of drug resistance was still severe. Absence of fever, male, retreatment, and pulmonary concurrent with extrapulmonary tuberculosis are risk factors for DR-TB in children.


Subject(s)
Tuberculosis, Extrapulmonary , Tuberculosis, Multidrug-Resistant , Child , Humans , Male , Infant, Newborn , Infant , Child, Preschool , Adolescent , Retrospective Studies , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Risk Factors , China/epidemiology , Fever
16.
Front Cell Infect Microbiol ; 14: 1323261, 2024.
Article in English | MEDLINE | ID: mdl-38444539

ABSTRACT

Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease characterized by the excessive accumulation of fat in hepatocytes. However, due to the complex pathogenesis of MAFLD, there are no officially approved drugs for treatment. Therefore, there is an urgent need to find safe and effective anti-MAFLD drugs. Recently, the relationship between the gut microbiota and MAFLD has been widely recognized, and treating MAFLD by regulating the gut microbiota may be a new therapeutic strategy. Natural products, especially plant natural products, have attracted much attention in the treatment of MAFLD due to their multiple targets and pathways and few side effects. Moreover, the structure and function of the gut microbiota can be influenced by exposure to plant natural products. However, the effects of plant natural products on MAFLD through targeting of the gut microbiota and the underlying mechanisms are poorly understood. Based on the above information and to address the potential therapeutic role of plant natural products in MAFLD, we systematically summarize the effects and mechanisms of action of plant natural products in the prevention and treatment of MAFLD through targeting of the gut microbiota. This narrative review provides feasible ideas for further exploration of safer and more effective natural drugs for the prevention and treatment of MAFLD.


Subject(s)
Biological Products , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Biological Products/pharmacology , Biological Products/therapeutic use , Hepatocytes
17.
Fish Shellfish Immunol ; 148: 109477, 2024 May.
Article in English | MEDLINE | ID: mdl-38447782

ABSTRACT

Proteins from the C1q domain-containing (C1qDC) family recognize self-, non-self-, and altered-self ligands and serves as an initiator molecule for the classical complement pathway as well as recognizing immune complexes. In this study, C1qDC gene family members were identified and analyzed in grass carp (Ctenopharyngodon idellus). Members of the C1q subfamily were cloned, and their response to infection with the grass carp virus was investigated. In the grass carp genome, 54 C1qDC genes and 67 isoforms have been identified. Most were located on chromosome 3, with 52 shared zebrafish homologies. Seven substantially differentially expressed C1qDC family genes were identified in the transcriptomes of cytokine-induced killer (CIK) cells infected with grass carp reovirus (GCRV), all of which exhibited sustained upregulation. The opening reading frames of grass carp C1qA, C1qB, and C1qC, belonging to the C1q subfamily, were determined to be 738, 732, and 735 base pairs, encoding 245, 243, and 244 amino acids with molecular weights of 25.81 kDa, 25.63 kDa and 26.16 kDa, respectively. Three genes were detected in the nine collected tissues, and their expression patterns were similar, with the highest expression levels observed in the spleen. In vivo after GCRV infection showed expression trends of C1qA, C1qB, and C1qC in the liver, spleen, and kidney. An N-type pattern in the liver and kidney was characterized by an initial increase followed by a decrease, with the highest expression occurring during the recovering period, and a V-type pattern in the spleen with the lowest expression levels during the death period. In vitro, after GCRV infection showed expression trends of C1qA, C1qB, and C1qC, and this gradually increased within the first 24 h, with a notable increase observed at the 24 h time point. After CIK cells incubation with purified recombinant proteins, rC1qA, rC1qB, and rC1qC for 3 h, followed by GCRV inoculation, the GCRV replication indicated that rC1qC exerted a substantial inhibitory effect on viral replication in CIK cells after 24 h of GCRV inoculation. These findings offer valuable insights into the structure, evolution, and function of the C1qDC family genes and provide a foundational understanding of the immune function of C1q in grass carp.


Subject(s)
Carps , Fish Diseases , Reoviridae Infections , Reoviridae , Animals , Carps/genetics , Carps/metabolism , Zebrafish , Complement C1q/genetics , Reoviridae/physiology , Complement System Proteins , Fish Proteins/chemistry
18.
J Phys Condens Matter ; 36(25)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38484393

ABSTRACT

The van der Waals (vdW) heterostructures of Z-scheme PbI2/g-C3N4with an indirect bandgap have gained much attention in recent years due to their unique properties and potential applications in various fields. However, the optoelectronic characteristics and strain-modulated effects are not yet fully understood. By considering this, six stacking models of PbI2/g-C3N4are proposed and the stablest structure is selected for further investigation. The uniaxial and biaxial strains (-10%-10%) regulated band arrangement, charge distribution, optical absorption in the framework of density functional theory are systematically explored. The compressive uniaxial strain of -8.55% changes the band type from II→I, and the biaxial strains of -7.12%, -5.25%, 8.91% change the band type in a way of II→I→II→I, acting like the 'band-pass filter'. The uniaxial strains except -10% compressive strain, and the -6%, -4%, 2%, 4%, 10% biaxial strains will enhance the light absorption of PbI2/g-C3N4. The exerted strains on PbI2/g-C3N4generate different power conversion efficiency (ηPCE) values ranging from 3.64% to 25.61%, and the maximumηPCEis generated by -6% biaxial strain. The results of this study will pave the way for the development of new electronic and optoelectronic materials with customized properties in photocatalytic field and optoelectronic devices.

19.
BMC Med Genomics ; 17(1): 49, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331768

ABSTRACT

BACKGROUND: Pathway mutations have been calculated to predict the poor prognosis and immunotherapy resistance in head and neck squamous cell carcinoma (HNSCC). To uncover the unique markers predicting prognosis and immune therapy response, the accurate quantification of pathway mutations are required to evaluate epithelial-mesenchymal transition (EMT) and immune escape. Yet, there is a lack of score to accurately quantify pathway mutations. MATERIAL AND METHODS: Firstly, we proposed Individualized Weighted Hallmark Gene Set Mutation Burden (IWHMB, https://github.com/YuHongHuang-lab/IWHMB ) which integrated pathway structure information and eliminated the interference of global Tumor Mutation Burden to accurately quantify pathway mutations. Subsequently, to further elucidate the association of IWHMB with EMT and immune escape, support vector machine regression model was used to identify IWHMB-related transcriptomic features (IRG), while Adversarially Regularized Graph Autoencoder (ARVGA) was used to further resolve IRG network features. Finally, Random walk with restart algorithm was used to identify biomarkers for predicting ICI response. RESULTS: We quantified the HNSCC pathway mutation signatures and identified pathway mutation subtypes using IWHMB. The IWHMB-related transcriptomic features (IRG) identified by support vector machine regression were divided into 5 communities by ARVGA, among which the Community 1 enriching malignant mesenchymal components promoted EMT dynamically and regulated immune patterns associated with ICI responses. Bridge Hub Gene (BHG) identified by random walk with restart was key to IWHMB in EMT and immune escape, thus, more predictive for ICI response than other 70 public signatures. CONCLUSION: In summary, the novel pathway mutation scoring-IWHMB suggested that the elevated malignancy mediated by pathway mutations is a major cause of poor prognosis and immunotherapy failure in HNSCC, and is capable of identifying novel biomarkers to predict immunotherapy response.


Subject(s)
Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/therapy , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/therapy , Mutation , Prognosis , Biomarkers, Tumor/genetics , Immunotherapy , Epithelial-Mesenchymal Transition/genetics
20.
Zhongguo Zhong Yao Za Zhi ; 49(2): 550-558, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403329

ABSTRACT

This study aimed to analyze the therapeutic effect of Zicuiyin on diabetic kidney disease(DKD) and explore the possible targets of this formula. Eighteen DKD patients treated in the endocrine department or nephrology department of Second Affilia-ted Hospital of Tianjin University of Traditional Chinese Medicine from January to December in 2019 were enrolled and assigned into a test group(n=10) and a control group(n=8). Both groups received routine chemical medicine treatment. In addition, the test group was treated with Zicuiyin and the control group with Huangkui Capsules for 8 weeks. The clinical trial was approved by the Ethics Committee of Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, with the ethical approval No. 2017-023-01, and all the patients signed the informed consent form. The results showed that the 8-week treatment with Zicuiyin lowered the level of glycosylated hemoglobin(HbA1c) and recovered the 24 h urinary protein(24hUP), 24 h urinary microalbumin(24hmAlb), urine albumin-to-creatinine ratio(UACR), and estimated glomerular filtration rate(eGFR) of the patients with 24hUP<3.5 g. According to the different levels in 24hUP, all the patients were divided into two subgroups(subgroup A with 24hUP<3.5 g and subgroup B with 24hUP≥3.5 g). The ultra-high performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS)-based non-targeted metabolomics analysis was conducted on the baseline serum samples from diffe-rent subgroups of patients. Nineteen biomarker candidates were identified to distinguish the metabolic differences between the two subgroups, and their correlations with clinical indicators were analyzed. Zicuiyin lowered the levels of phenylalanine, pseudouridine, and adenosine [fold change(FC)<0.5, P<0.05] in subgroup A. The results indicated that Zicuiyin was more effective on the DKD patients with low urinary protein levels, and its targets were involved in phenylalanine metabolism and nucleoside metabolism.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Humans , Diabetic Nephropathies/drug therapy , Tandem Mass Spectrometry , Glomerular Filtration Rate , Metabolomics , Phenylalanine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...