Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952336

ABSTRACT

The development of heteroatom dual-doped porous carbon frameworks with uniform doping is highly desirable for achieving highly efficient oxygen reduction reaction (ORR) activity, due to their tunable chemical and electronic structures. Herein, porous covalent triazine-based frameworks (CTFs) incorporating nitrogen/chorine dual-doped porous carbon networks were fabricated by selecting 1,3-bis(4-cyanophenyl) imidazolium chloride as a building block, in a facile and controllable way via a bottom-up strategy. The resulting nitrogen/chorine dual-doped catalyst CCTF-700 exhibits excellent ORR performance with a more positive onset and half-wave potential (0.85 V vs. RHE), higher diffusion-limited current density and significantly improved stability in comparison with the benchmark commercial 20 wt% Pt/C catalyst. It is worth mentioning that CCTF-700 shows one of the best ORR performances among all the reported metal-free electrocatalysts under alkaline conditions. This work paves the way for a controllable and reliable strategy to craft highly efficient heteroatom dual-doped carbon catalysts for energy conversion.

2.
Angew Chem Int Ed Engl ; 63(14): e202319472, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38320964

ABSTRACT

Herein, we propose an oxygen-containing species coordination strategy to boost CO2 electroreduction in the presence of O2. A two-dimensional (2D) conjugated metal-covalent organic framework (MCOF), denoted as NiPc-Salen(Co)2-COF that is composed of the Ni-phthalocyanine (NiPc) unit with well-defined Ni-N4-O sites and the salen(Co)2 moiety with binuclear Co-N2O2 sites, is developed and synthesized for enhancing the CO2RR under aerobic condition. In the presence of O2, one of the Co sites in the NiPc-Salen(Co)2-COF that coordinated with the intermediate of *OOH from ORR could decrease the energy barrier of the activation of CO2 molecules and stabilize the key intermediate *COOH of the CO2RR over the adjacent Co center. Besides, the oxygen species axially coordinated Ni-N4-O sites can favor in reducing the energy barrier of the intermediate *COOH formation for the CO2RR. Thus, NiPc-Salen(Co)2-COF exhibits high oxygen-tolerant CO2RR performance and achieves outstanding CO Faradaic efficiency (FECO) of 97.2 % at -1.0 V vs. the reversible hydrogen electrode (RHE) and a high CO partial current density of 40.3 mA cm-2 at -1.1 V in the presence of 0.5 % O2, which is superior to that in pure CO2 feed gas (FECO=94.8 %, jCO=19.9 mA cm-2). Notably, the NiPc-Salen(Co)2-COF achieves an industrial-level current density of 128.3 mA cm-2 in the flow-cell reactor with 0.5 % O2 at -0.8 V, which is higher than that in pure CO2 atmosphere (jCO=104.8 mA cm-2). It is worth noting that an excellent FECO of 86.8 % is still achieved in the presence of 5 % O2 at -1.0 V. This work provides an effective strategy to enable the CO2RR under O2 atmosphere by utilizing the *OOH intermediates of ORR to boost CO2 electroreduction.

3.
Nat Commun ; 15(1): 1479, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368417

ABSTRACT

The direct use of flue gas for the electrochemical CO2 reduction reaction is desirable but severely limited by the thermodynamically favorable oxygen reduction reaction. Herein, a photonicswitching unit 1,2-Bis(5'-formyl-2'-methylthien-3'-yl)cyclopentene (DAE) is integrated into a cobalt porphyrin-based covalent organic framework for highly efficient CO2 electrocatalysis under aerobic environment. The DAE moiety in the material can reversibly modulate the O2 activation capacity and electronic conductivity by the framework ring-closing/opening reactions under UV/Vis irradiation. The DAE-based covalent organic framework with ring-closing type shows a high CO Faradaic efficiency of 90.5% with CO partial current density of -20.1 mA cm-2 at -1.0 V vs. reversible hydrogen electrode by co-feeding CO2 and 5% O2. This work presents an oxygen passivation strategy to realize efficient CO2 electroreduction performance by co-feeding of CO2 and O2, which would inspire to design electrocatalysts for the practical CO2 source such as flue gas from power plants or air.

4.
J Am Chem Soc ; 146(1): 289-297, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38135454

ABSTRACT

Copper (Cu), with the advantage of producing a deep reduction product, is a unique catalyst for the electrochemical reduction of CO2 (CO2RR). Designing a Cu-based catalyst to trigger CO2RR to a multicarbon product and understanding the accurate structure-activity relationship for elucidating reaction mechanisms still remain a challenge. Herein, we demonstrate a rational design of a core-shell structured silica-copper catalyst (p-Cu@m-SiO2) through Cu-Si direct bonding for efficient and selective CO2RR. The Cu-Si interface fulfills the inversion in CO2RR product selectivity. The product ratio of C2H4/CH4 changes from 0.6 to 14.4 after silica modification, and the current density reaches a high of up to 450 mA cm-2. The kinetic isotopic effect, in situ attenuated total reflection Fourier-transform infrared spectra, and density functional theory were applied to elucidate the reaction mechanism. The SiO2 shell stabilizes the *H intermediate by forming Si-O-H and inhibits the hydrogen evolution reaction effectively. Moreover, the direct-bonded Cu-Si interface makes bare Cu sites with larger charge density. Such bare Cu sites and Si-O-H sites stabilized the *CHO and activated the *CO, promoting the coupling of *CHO and *CO intermediates to form C2H4. This work provides a promising strategy for designing Cu-based catalysts with high C2H4 catalytic activity.

5.
Angew Chem Int Ed Engl ; 62(46): e202309820, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37768737

ABSTRACT

Two-dimensional (2D) imine-based covalent organic frameworks (COFs) hold potential for photocatalytic CO2 reduction. However, high energy barrier of imine linkage impede the in-plane photoelectron transfer process, resulting in inadequate efficiency of CO2 photoreduction. Herein, we present a dimensionality induced local electronic modulation strategy through the construction of one-dimensional (1D) pyrene-based covalent organic frameworks (PyTTA-COF). The dual-chain-like edge architectures of 1D PyTTA-COF enable the stabilization of aromatic backbones, thus reducing energy loss during exciton dissociation and thermal relaxation, which provides energetic photoelectron to traverse the energy barrier of imine linkages. As a result, the 1D PyTTA-COF exhibits significantly enhanced CO2 photoreduction activity under visible-light irradiation when coordinated with metal cobalt ion, yielding a remarkable CO evolution of 1003 µmol g-1 over an 8-hour period, which surpasses that of the corresponding 2D counterpart by a factor of 59. These findings present a valuable approach to address in-plane charge transfer limitations in imine-based COFs.

6.
J Am Chem Soc ; 145(36): 19856-19865, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37653575

ABSTRACT

Introducing an external visible-light field would be a promising strategy to improve the activity of the electrocatalytic CO2 reduction reaction (CO2RR), but it still remains a challenge due to the short excited-state lifetime of active sites. Herein, Ru(bpy)3Cl2 struts as powerful photosensitive donors were immobilized into the backbones of Co-porphyrin-based covalent organic frameworks (named Co-Bpy-COF-Rux, x is the molar ratio of Ru and Co species, x = 1/2 and 2/3) via coordination bonds, for the photo-coupled CO2RR to produce CO. The optimal Co-Bpy-COF-Ru1/2 displays a high CO Faradaic efficiency of 96.7% at -0.7 V vs reversible hydrogen electrode (RHE) and a CO partial current density of 16.27 mA cm-2 at -1.1 V vs RHE under the assistance of light, both of which were far surpassing the values observed in the dark. The significantly enhanced activity is mainly attributed to the incorporation of a Ru(bpy)3Cl2 donor with long excited-state lifetime and concomitantly giant built-in electric field in Co-Bpy-COF-Ru1/2, which efficiently accelerate the photo-induced electron transfer from Ru(bpy)3Cl2 to the cobalt-porphyrin under the external light. Thus, the cobalt-porphyrin active sites have a longer excited-state lifetime to lower the rate-determining steps' energy occurring during the actual photo-coupled electrocatalytic CO2RR process. This is the first work of porphyrin-based COFs for photo-coupled CO2RR, opening a new frontier for the construction of efficient photo-coupled electrocatalysts.

7.
Angew Chem Int Ed Engl ; 62(36): e202306822, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37468435

ABSTRACT

We propose an effective highest occupied d-orbital modulation strategy engendered by breaking the coordination symmetry of sites in the atomically precise Cu nanocluster (NC) to switch the product of CO2 electroreduction from HCOOH/CO to higher-valued hydrocarbons. An atomically well-defined Cu6 NC with symmetry-broken Cu-S2 N1 active sites (named Cu6 (MBD)6 , MBD=2-mercaptobenzimidazole) was designed and synthesized by a judicious choice of ligand containing both S and N coordination atoms. Different from the previously reported high HCOOH selectivity of Cu NCs with Cu-S3 sites, the Cu6 (MBD)6 with Cu-S2 N1 coordination structure shows a high Faradaic efficiency toward hydrocarbons of 65.5 % at -1.4 V versus the reversible hydrogen electrode (including 42.5 % CH4 and 23 % C2 H4 ), with the hydrocarbons partial current density of -183.4 mA cm-2 . Theoretical calculations reveal that the symmetry-broken Cu-S2 N1 sites can rearrange the Cu 3d orbitals with d x 2 - y 2 ${d_{x^2 - y^2 } }$ as the highest occupied d-orbital, thus favoring the generation of key intermediate *COOH instead of *OCHO to favor *CO formation, followed by hydrogenation and/or C-C coupling to produce hydrocarbons. This is the first attempt to regulate the coordination mode of Cu atom in Cu NCs for hydrocarbons generation, and provides new inspiration for designing atomically precise NCs for efficient CO2 RR towards highly-valued products.

8.
Nat Commun ; 14(1): 3317, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37286561

ABSTRACT

Porous liquids are fluids with the permanent porosity, which can overcome the poor gas solubility limitations of conventional porous solid materials for three phase gas-liquid-solid reactions. However, preparation of porous liquids still requires the complicated and tedious use of porous hosts and bulky liquids. Herein, we develop a facile method to produce a porous metal-organic cage (MOC) liquid (Im-PL-Cage) by self-assembly of long polyethylene glycol (PEG)-imidazolium chain functional linkers, calixarene molecules and Zn ions. The Im-PL-Cage in neat liquid has permanent porosity and fluidity, endowing it with a high capacity of CO2 adsorption. Thus, the CO2 stored in an Im-PL-Cage can be efficiently converted to the value-added formylation product in the atmosphere, which far exceeds the porous MOC solid and nonporous PEG-imidazolium counterparts. This work offers a new method to prepare neat porous liquids for catalytic transformation of adsorbed gas molecules.

9.
Chem Commun (Camb) ; 59(34): 5102-5105, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37039072

ABSTRACT

The development of single atom catalysts (SACs) for CO2 electroreduction in acidic electrolytes can greatly improve the CO2 utilization efficiency but remains challenging. We report a carbon-embedded atomic nickel catalyst prepared from carbon black, porphyrin and nickel(II) salts. The catalyst shows excellent activity for CO2 reduction with high CO faradaic efficiency of 99.9% and an industrial-level CO partial current density of 296.4 mA cm-2 in acidic media, which indicates the importance of carbon-supported SACs.

10.
J Am Chem Soc ; 145(14): 8261-8270, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36976930

ABSTRACT

The photocatalytic conversion of CO2 into C2+ products such as ethylene is a promising path toward the carbon neutral goal but remains a big challenge due to the high activation barrier for CO2 and similar reduction potentials of many possible multi-electron-transfer products. Herein, an effective tandem photocatalysis strategy has been developed to support conversion of CO2 to ethylene by construction of the synergistic dual sites in rhenium-(I) bipyridine fac-[ReI(bpy)(CO)3Cl] (Re-bpy) and copper-porphyrinic triazine framework [PTF(Cu)]. With these two catalysts, a large amount of ethylene can be produced at a rate of 73.2 µmol g-1 h-1 under visible light irradiation. However, ethylene cannot be obtained from CO2 by use of either component of the Re-bpy or PTF(Cu) catalysts alone; with a single catalyst, only monocarbon product CO is produced under similar conditions. In the tandem photocatalytic system, the CO generated at the Re-bpy sites is adsorbed by the nearby Cu single sites in PTF(Cu), and this is followed by a synergistic C-C coupling process which ultimately produces ethylene. Density functional theory calculations demonstrate that the coupling process between PTF(Cu)-*CO and Re-bpy-*CO to form the key intermediate Re-bpy-*CO-*CO-PTF(Cu) is vital to the C2H4 production. This work provides a new pathway for the design of efficient photocatalysts for photoconversion of CO2 to C2 products via a tandem process driven by visible light under mild conditions.

11.
Angew Chem Int Ed Engl ; 62(7): e202215687, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36424351

ABSTRACT

We present the first example of charged imidazolium functionalized porphyrin-based covalent organic framework (Co-iBFBim-COF-X) for electrocatalytic CO2 reduction reaction, where the free anions (e.g., F- , Cl- , Br- , and I- ) of imidazolium ions nearby the active Co sites can stabilize the key intermediate *COOH and inhibit hydrogen evolution reaction. Thus, Co-iBFBim-COF-X exhibits higher activity than the neutral Co-BFBim-COF, following the trend of F-

12.
Acc Chem Res ; 55(20): 2978-2997, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36153952

ABSTRACT

ConspectusThe continuing increase of the concentration of atmospheric CO2 has caused many environmental issues including climate change. Catalytic conversion of CO2 using thermochemical, electrochemical, and photochemical methods is a potential technique to decrease the CO2 concentration and simultaneously obtain value-added chemicals. Due to the high energy barrier of CO2 however, this method is still far from large-scale applications which requires high activity, selectivity, and stability. Therefore, development of efficient catalysts to convert CO2 to different products is urgent. With their well-engineered pores and chemical compositions, high surface area, elevated CO2 adsorption capability, and adjustable active sites, porous crystalline frameworks including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are potential materials for catalytic CO2 conversion. Here, we summarize our recent work on MOFs and COFs for thermocatalytic, electrocatalytic, and photocatalytic CO2 conversion and describe the structure-activity relationships that could guide the design of effective catalysts.The first section of this paper describes imidazolium-functionalized porous MOFs, including porous liquid and cationic MOFs with nucleophilic halogen ions, which can promote thermocatalytically CO2 cycloaddition reaction with epoxides toward cyclic carbonates at one bar pressure. A porous liquid MOF takes on the role of a CO2 reservoir to tackle the low local CO2 concentrations in gas-liquid-solid heterogeneous reactions. Imidazolium-functionalized MOFs with halogen ions for CO2 cycloaddition could avoid the use of cocatalysts, and this leads to milder and more facile experimental conditions and separation processes.In a section dealing with the electrocatalytic CO2 reduction reaction (CO2RR), we developed a series of conductive porous framework materials with fast electron transmission capabilities, which afford high current densities and outperform the traditional MOF and COF catalysts that have been reported. The intrinsically conductive two-dimensional 2D MOFs and COFs nanosheets based on the fully π-conjugated phthalocyanine motif with excellent electron transport capability were prepared, and strong electron transporters were also integrated into metalloporphyrin-based COFs for CO2RR. Cu2O quantum dots and Cu nanoparticles (NPs) can be uniformly dispersed on porous conductive MOFs/COFs to afford synergistic and/or tandem electrocatalysts, which can achieve highly selective production of CH4 or C2H4 in CO2RR.A third section describes our efforts to facilitate electron-hole separation in CO2 photocatalysis. Our focus is on regulation of coordination spheres in MOFs, fabrication of the architecture of MOF heterojunctions, and engineering MOF films to facilitate photocatalytic CO2 reduction.Finally, we discuss several problems associated with the studies of MOFs and COFs for CO2 conversion and consider some prospects of the fabrication of effective porous frameworks for CO2 adsorption and conversion.

13.
Angew Chem Int Ed Engl ; 61(40): e202207478, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-35789079

ABSTRACT

Free N-heterocyclic carbenes (NHCs) are generally prepared by treatment of imidazolium precursors with strong alkali reagents, which usually produces inactive NHC dimers. This treatment would destroy porous supports and thus make supported NHC catalysts difficult to recovery and reuse. Herein, we report the first stable CO2 -masked N-heterocyclic carbenes (NHCs) grafted on a porous crystalline covalent organic framework (COF). The stable NHC-CO2 moieties in the COF-NHC-CO2 could be transformed in situ into isolated NHCs by heating, which exhibit superior catalytic performances in hydrosilylation and N-formylation reactions with CO2 . The NHC sites can reversibly form NHC-CO2 and thus can be easily recycled and reused while maintaining excellent catalytic activity. Density functional theory calculations revealed that NHC sites can be fully exposed after removal of CO2 -masks and rapidly react with silanes, which endows COF-NHC with high catalytic activity.

14.
Natl Sci Rev ; 9(6): nwab157, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35822067

ABSTRACT

Metal N-heterocyclic carbenes (M-NHCs) on the pore walls of a porous metal-organic framework (MOF) can be used as active sites for efficient organic catalysis. Traditional approaches that need strong alkaline reagents or insoluble Ag2O are not, however, suitable for the incorporation of NHCs on the backbones of MOFs because such reagents could destroy their frameworks or result in low reactivity. Accordingly, development of facile strategies toward functional MOFs with covalently bound M-NHCs for catalysis is needed. Herein, we describe the development of a general and facile approach to preparing MOFs with covalently linked active M-NHC (M = Pd, Ir) single-site catalysts by using a soluble Ag salt AgOC(CF3)3 as the source and subsequent transmetalation. The well-defined M-NHC-MOF (M = Pd, Ir) catalysts obtained in this way have shown excellent catalytic activity and stability in Suzuki reactions and hydrogen transfer reactions. This provides a general and facile strategy for anchoring functional M-NHC single-site catalysts onto functionalized MOFs for different reactions.

15.
Angew Chem Int Ed Engl ; 60(48): 25485-25492, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34533874

ABSTRACT

Herein, an effective tandem catalysis strategy is developed to improve the selectivity of the CO2 RR towards C2 H4 by multiple distinct catalytic sites in local vicinity. An earth-abundant elements-based tandem electrocatalyst PTF(Ni)/Cu is constructed by uniformly dispersing Cu nanoparticles (NPs) on the porphyrinic triazine framework anchored with atomically isolated nickel-nitrogen sites (PTF(Ni)) for the enhanced CO2 RR to produce C2 H4 . The Faradaic efficiency of C2 H4 reaches 57.3 % at -1.1 V versus the reversible hydrogen electrode (RHE), which is about 6 times higher than the non-tandem catalyst PTF/Cu, which produces CH4 as the major carbon product. The operando infrared spectroscopy and theoretic density functional theory (DFT) calculations reveal that the local high concentration of CO generated by PTF(Ni) sites can facilitate the C-C coupling to form C2 H4 on the nearby Cu NP sites. The work offers an effective avenue to design electrocatalysts for the highly selective CO2 RR to produce multicarbon products via a tandem route.

16.
Angew Chem Int Ed Engl ; 60(38): 20915-20920, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34278674

ABSTRACT

The unique applications of porous metal-organic framework (MOF) liquids with permanent porosity and fluidity have attracted significant attention. However, fabrication of porous MOF liquids remains challenging because of the easy intermolecular self-filling of the cavity or the rapid settlement of porous hosts in hindered solvents that cannot enter their pores. Herein, we report a facile strategy for the fabrication of a MOF liquid (Im-UiO-PL) by surface ionization of an imidazolium-functionalized framework with a sterically hindered poly(ethylene glycol) sulfonate (PEGS) canopy. The Im-UiO-PL obtained in this way has a CO2 adsorption approximately 14 times larger than that of pure PEGS. Distinct from a porous MOF solid counterpart, the stored CO2 in Im-UiO-PL can be slowly released and efficiently utilized to synthesize cyclic carbonates in the atmosphere. This is the first example of the use of a porous MOF liquid as a CO2 storage material for catalysis. It offers a new method for the fabrication of unique porous liquid MOFs with functional behaviors in various fields of gas adsorption and catalysis.

17.
Angew Chem Int Ed Engl ; 60(31): 17108-17114, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34033203

ABSTRACT

The electrocatalytic conversion of CO2 into value-added chemicals is a promising approach to realize a carbon-energy balance. However, low current density still limits the application of the CO2 electroreduction reaction (CO2 RR). Metal-organic frameworks (MOFs) are one class of promising alternatives for the CO2 RR due to their periodically arranged isolated metal active sites. However, the poor conductivity of traditional MOFs usually results in a low current density in CO2 RR. We have prepared conductive two-dimensional (2D) phthalocyanine-based MOF (NiPc-NiO4 ) nanosheets linked by nickel-catecholate, which can be employed as highly efficient electrocatalysts for the CO2 RR to CO. The obtained NiPc-NiO4 has a good conductivity and exhibited a very high selectivity of 98.4 % toward CO production and a large CO partial current density of 34.5 mA cm-2 , outperforming the reported MOF catalysts. This work highlights the potential of conductive crystalline frameworks in electrocatalysis.

18.
Chem Commun (Camb) ; 57(17): 2140-2143, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33528467

ABSTRACT

A new strategy to prepare soluble homogeneous catalysts is developed by introducing imidazolium into cationic calix[4]arene-based metal-organic cages (MOCs). The soluble MOCs show high activity and recyclability in the cycloaddition reaction of CO2 without the addition of any co-catalysts. This method provides new inspiration to design highly efficient catalysts by combining the advantages of homogeneous and heterogeneous catalysis.

19.
Inorg Chem ; 60(4): 2112-2116, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-32613832

ABSTRACT

Three cationic capsule-shaped Zr-based metal-organic polyhedra (MOPs) with different cavity sizes were successfully constructed through the self-assembly of trinuclear zirconocene clusters and imidazolium-functionalized dicarboxylic ligands. Owing to the imidazolium groups in the MOPs, they show good CO2 adsorption uptake. Moreover, the halogen anions of the imidazolium groups and Brønsted acid sites (-OH) in the Zr-based knots are in close proximity, making these MOPs able to catalyze synergistically the cycloaddition reaction of CO2 with epoxides into cyclic carbonates. This is the first report of using MOPs as catalysts for this reaction without the addition of a cocatalyst.

20.
Small ; 17(22): e2004933, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33155428

ABSTRACT

Covalent organic frameworks (COFs) are promising candidates for electrocatalytic reduction of carbon dioxide into valuable chemicals due to their porous crystalline structures and tunable single active sites, but the low conductivity leads to unmet current densities for commercial application. The challenge is to create conductive COFs for highly efficient electrocatalysis of carbon dioxide reduction reaction (CO2 RR). Herein, a porphyrin-based COF containing donor-acceptor (D-A) heterojunctions, termed TT-Por(Co)-COF, is constructed from thieno[3,2-b]thiophene-2,5-dicarbaldehyde (TT) and 5,10,15,20-tetrakis(4-aminophenyl)-porphinatocobalt (Co-TAPP) via imine condensation reaction. Compared with COF-366-Co without TT, TT-Por(Co)-COF displays enhanced CO2 RR performance to produce CO due to its favorable charge transfer capability from the electron donor TT moieties to the acceptor Co-porphyrin ring active center. The combination of strong charge transfer properties and enormous amount of accessible active sites in the 2D TT-Por(Co)-COF nanosheets results in good catalytic performance with a high Faradaic efficiency of CO (91.4%, -0.6 V vs reversible hydrogen electrode (RHE) and larger partial current density of 7.28 mA cm-2 at -0.7 V versus RHE in aqueous solution. The results demonstrate that integration of D-A heterojunctions in COF can facilitate the intramolecular electron transfer, and generate high current densities for CO2 RR.

SELECTION OF CITATIONS
SEARCH DETAIL
...