Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 43(4): 889-896, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34253876

ABSTRACT

Nicotine, a major component of tobacco, is highly addictive and acts on nicotinic acetylcholine receptors (nAChRs) to stimulate reward-associated circuits in the brain. It is well known that nAChRs play critical roles in mediating nicotine reward and addiction. Current FDA-approved medications for smoking cessation are the antidepressant bupropion and the nicotinic partial agonist varenicline, yet both are limited by adverse side effects and moderate efficacy. Thus, development of more efficacious medications with fewer side effects for nicotine addiction and smoking cessation is urgently needed. l-Tetrahydropalmatine (l-THP) is an active ingredient of the Chinese medicinal herb Corydalis ambigua that possesses rich neuropharmacological actions on dopamine (DA) receptors in the mesocorticolimbic dopaminergic reward pathway. L-THP has been explored as anti-addiction treatments for drug abuse including nicotine. However, the targets and mechanisms of l-THP-caused anti-nicotine effects are largely unknown. In this study we address this question by elucidating the effects of l-THP on human neuronal nAChRs using patch-clamp recordings. Human neuronal α4ß2-nAChRs were heterologously expressed in SH-EP1 human epithelial cells. Bath application of nicotine (0.1-100 µM) induced inward currents, co-application of l-THP (3 µM) inhibited nicotine-induced currents in the transfected cells. L-THP-caused inhibition was concentration-dependent (the EC50 values for inhibiting the peak and steady-state current were 18 and 2.1 µM, respectively) and non-competitive. Kinetic analysis of the whole-cell currents showed that l-THP slowed rising time and accelerated decay time constants. L-THP specifically modulated α4ß2-nAChRs, as it did not affect α7-nAChRs or α1*-nAChRs (muscle type). Interestingly, two putative α4ß2-nAChR isoforms, namely sazetidine A-activated, high-sensitive one (α42ß23-nAChR) and cytisine-activated, low-sensitive one (α43ß22-nAChR) were pharmacologically separated, and the low-sensitive one was more susceptible to l-THP inhibition than the high-sensitive one. In conclusion, we demonstrate that l-THP blocks neuronal α4ß2-nAChR function, which may underlie its inhibition on nicotine addiction.


Subject(s)
Nicotine , Receptors, Nicotinic , Berberine Alkaloids , Humans , Kinetics , Nicotine/pharmacology , Receptors, Nicotinic/metabolism
2.
Acta Pharmacol Sin ; 41(2): 163-172, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31399700

ABSTRACT

Cocaine is one of the most abused illicit drugs worldwide. It is well known that the dopamine (DA) transporter is its major target; but cocaine also acts on other targets including nicotinic acetylcholine receptors (nAChRs). In this study, we investigated the effects of cocaine on a special subtype of neuronal nAChR, α3ß4-nAChR expressed in native SH-SY5Y cells. α3ß4-nAChR-mediated currents were recorded using whole-cell recordings. Drugs were applied using a computer-controlled U-tube drug perfusion system. We showed that bath application of nicotine induced inward currents in a concentration-dependent manner with an EC50 value of 20 µM. Pre-treatment with cocaine concentration-dependently inhibited nicotine-induced current with an IC50 of 1.5 µM. Kinetic analysis showed that cocaine accelerated α3ß4-nAChR desensitization, which caused a reduction of the amplitude of nicotine-induced currents. Co-application of nicotine and cocaine (1.5 µM) depressed the maximum response on the nicotine concentration-response curve without changing the EC50 value, suggesting a non-competitive mechanism. The cocaine-induced inhibition of nicotine response exhibited both voltage- and use-dependence, suggesting an open-channel blocking mechanism. Furthermore, intracellular application of GDP-ßS (via recording electrode) did not affect cocaine-induced inhibition, suggesting that cocaine did not alter receptor internalization. Moreover, intracellular application of cocaine (30 µM) failed to alter the nicotine response. Finally, cocaine (1.5 µM) was unable to inhibit the nicotine-induced inward current in heterologous expressed α6/α3ß2ß3-nAChRs and α4ß2-nAChRs expressed in human SH-EP1 cells. Collectively, our results suggest that cocaine is a potent blocker for native α3ß4-nAChRs expressed in SH-SY5Y cells.


Subject(s)
Cocaine/pharmacology , Neurons/drug effects , Receptors, Nicotinic/drug effects , Cell Line, Tumor , Cocaine/administration & dosage , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Neuroblastoma/metabolism , Neurons/metabolism , Nicotine/pharmacology , Patch-Clamp Techniques , Receptors, Nicotinic/metabolism
3.
Acta Pharmacol Sin ; 39(10): 1571-1581, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29795357

ABSTRACT

Neuronal nicotinic acetylcholine receptors containing α6 subunits (α6*-nAChRs) show highly restricted distribution in midbrain neurons associated with pleasure, reward, and mood control, suggesting an important impact of α6*-nAChRs in modulating mesolimbic functions. However, the function and pharmacology of α6*-nAChRs remain poorly understood because of the lack of selective agonists for α6*-nAChRs and the challenging heterologous expression of functional α6*-nAChRs in mammalian cell lines. In particular, the α6 subunit is commonly co-expressed with α4*-nAChRs in the midbrain, which masks α6*-nAChR (without α4) function and pharmacology. In this study, we systematically profiled the pharmacology and function of α6*-nAChRs and compared these properties with those of α4ß2 nAChRs expressed in the same cell line. Heterologously expressed human α6/α3 chimeric subunits (α6 N-terminal domain joined with α3 trans-membrane domains and intracellular loops) with ß2 and ß3 subunits in the human SH-EP1 cell line (α6*-nAChRs) were used. Patch-clamp whole-cell recordings were performed to measure these receptor-mediated currents. Functionally, the heterologously expressed α6*-nAChRs exhibited excellent function and showed distinct nicotine-induced current responses, such as kinetics, inward rectification and recovery from desensitization, compared with α4ß2-nAChRs. Pharmacologically, α6*-nAChR was highly sensitive to the α6 subunit-selective antagonist α-conotoxin MII but had lower sensitivity to mecamylamine and dihydro-ß-erythroidine. Nicotine and acetylcholine were found to be full agonists for α6*-nAChRs, whereas epibatidine and cytisine were determined to be partial agonists. Heterologously expressed α6*-nAChRs exhibited pharmacology and function distinct from those of α4ß2-nAChRs, suggesting that α6*-nAChRs may mediate different cholinergic signals. Our α6*-nAChR expression system can be used as an excellent cell model for future investigations of α6*-nAChR function and pharmacology.


Subject(s)
Nicotinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/metabolism , Amino Acid Sequence , Cell Line , Humans , Kinetics , Patch-Clamp Techniques/methods , Receptors, Nicotinic/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...