Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35743283

ABSTRACT

The AP2/ERF transcription factors are widely involved in the regulation of plant growth, development and stress responses. Arabidopsis ERF012 is differentially responsive to various stresses; however, its potential regulatory role remains elusive. Here, we show that ERF012 is predominantly expressed in the vascular bundles, lateral root primordium and vein branch points. ERF012 overexpression inhibits root growth, whereas it promotes root hair development and leaf senescence. In particular, ERF012 may downregulate its target genes AtC4H and At4CL1, key players in phenylpropanoid metabolism and cell wall formation, to hinder auxin accumulation and thereby impacting root growth and leaf senescence. Consistent with this, exogenous IAA application effectively relieves the effect of ERF012 overexpression on root growth and leaf senescence. Meanwhile, ERF012 presumably activates ethylene biosynthesis to promote root hair development, considering that the ERF012-mediated root hair development can be suppressed by the ethylene biosynthetic inhibitor. In addition, ERF012 overexpression displays positive and negative effects on low- and high-temperature responses, respectively, while conferring plant resistance to drought, salinity and heavy metal stresses. Taken together, this study provides a comprehensive evaluation of the functional versatility of ERF012 in plant growth, development and abiotic stress responses.


Subject(s)
Arabidopsis , Ethylenes/pharmacology , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Plant Roots/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological
2.
Ecotoxicol Environ Saf ; 220: 112406, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34119927

ABSTRACT

Boron (B) excess gives rise to a serious agricultural problem. In this study, we identified a B toxicity responsive transcription factor AtWRKY47 in Arabidopsis thaliana. The T-DNA insertion mutants Atwrky47 showed enhanced tolerance to B toxicity with better growth parameters under high B conditions compared to wild-type Col-0 plants. Quantitative analysis of AtWRKY47 mRNA abundance indicated that it was down-regulated under B toxicity conditions. Fluorescently labeled AtWRKY47 protein was localized in nucleus. In contrast to the phenotype of Atwrky47 mutants, overexpression of AtWRKY47 in Col-0 background resulted in lower biomass, less chlorophyll content, and increased sensitivity to B toxicity. More importantly, the B concentration in shoots was higher in the overexpression lines and lower in the Atwrky47 mutants than in Col-0 plants, respectively. These results demonstrate that AtWRKY47 gene plays a key role in regulating plant tolerance to B toxicity.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Boron/metabolism , Drug Tolerance , Transcription Factors/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Boron/toxicity , Drug Tolerance/genetics , Gene Expression Regulation, Plant , Mutation , Phenotype , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Transcription Factors/genetics
3.
J Exp Bot ; 72(8): 3108-3121, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33530106

ABSTRACT

Boron (B) is an essential micronutrient for plant growth and development. Jasmonic acid (JA) plays pivotal roles in plant growth, but the underlying molecular mechanism of JA involvement in B-deficiency-induced root growth inhibition is yet to be explored. In this study, we investigated the response of JA to B deficiency and the mechanism of JAR1-dependent JA signaling in root growth inhibition under B deficiency in Arabidopsis. B deficiency enhanced JA signaling in roots, and root growth inhibition was partially restored by JA biosynthesis inhibition. The jar1-1 (jasmonate-resistant 1, JAR1) mutant, and mutants of coronatine-insensitive 1 (coi1-2) and myc2 defective in JA signaling showed insensitivity to B deficiency. The ethylene-overproduction mutant eto1 and ethylene-insensitive mutant etr1 showed sensitivity and insensitivity to B deficiency, respectively, suggesting that ethylene is involved in the inhibition of primary root growth under B deficiency. Furthermore, after a decline in levels of EIN3, which may contribute to root growth, ethylene signaling was weakened in the jar1-1 mutant root under B deficiency. Under B deficiency, B concentrations were increased in the roots and shoots of the jar1-1 mutant, owing to the large root system and its activity. Therefore, our findings revealed that JA, which is involved in the inhibition of root growth under B deficiency, is regulated by JAR1-activated JA and ethylene signaling pathways.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Boron/deficiency , Plant Roots/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cyclopentanes , Gene Expression Regulation, Plant , Nucleotidyltransferases , Oxylipins
4.
J Integr Plant Biol ; 63(5): 937-948, 2021 May.
Article in English | MEDLINE | ID: mdl-33289292

ABSTRACT

The essential micronutrient boron (B) has key roles in cell wall integrity and B deficiency inhibits plant growth. The role of jasmonic acid (JA) in plant growth inhibition under B deficiency remains unclear. Here, we report that low B elevates JA biosynthesis in Arabidopsis thaliana by inducing the expression of JA biosynthesis genes. Treatment with JA inhibited plant growth and, a JA biosynthesis inhibitor enhanced plant growth, indicating that the JA induced by B deficiency affects plant growth. Furthermore, examination of the JA signaling mutants jasmonate resistant1, coronatine insensitive1-2, and myc2 showed that JA signaling negatively regulates plant growth under B deficiency. We identified a low-B responsive transcription factor, ERF018, and used yeast one-hybrid assays and transient activation assays in Nicotiana benthamiana leaf cells to demonstrate that ERF018 activates the expression of JA biosynthesis genes. ERF018 overexpression (OE) lines displayed stunted growth and up-regulation of JA biosynthesis genes under normal B conditions, compared to Col-0 and the difference between ERF018 OE lines and Col-0 diminished under low B. These results suggest that ERF018 enhances JA biosynthesis and thus negatively regulates plant growth. Taken together, our results highlight the importance of JA in the effect of low B on plant growth.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Boron/deficiency , Boron/metabolism , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Plants, Genetically Modified/metabolism , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Plants, Genetically Modified/genetics
5.
Front Plant Sci ; 7: 221, 2016.
Article in English | MEDLINE | ID: mdl-26952137

ABSTRACT

Phytohormones play pivotal roles in the response of plants to various biotic and abiotic stresses. Boron (B) is an essential microelement for plants, and Brassica napus (B. napus) is hypersensitive to B deficiency. However, how auxin responds to B deficiency remained a dilemma for many years and little is known about how other phytohormones respond to B deficiency. The identification of B-efficient/inefficient B. napus indicates that breeding might overcome these constraints in the agriculture production. Here, we seek to identify phytohormone-related processes underlying B-deficiency tolerance in B. napus at the physiological and gene expression levels. Our study indicated low-B reduced indole-3-acetic acid (IAA) concentration in both the shoots and roots of B. napus, and affected the expression of the auxin biosynthesis gene BnNIT1 and the efflux gene BnPIN1 in a time-dependent manner. Low-B increased the jasmonates (JAs) and abscisic acid (ABA) concentrations and induced the expression of the ABA biosynthesis gene BnNCED3 and the ABA sensor gene BnPYL4 in the shoot. In two contrasting genotypes, the auxin concentration decreased more drastically in the B-inefficient genotype 'W10,' and together the expression of BnNIT1 and BnPIN1 also decreased more significantly in 'W10' under long-term B deficiency. While the JAs concentration was considerably higher in this genotype, and the ABA concentration was induced in 'W10' compared with the B-efficient genotype 'QY10.' Digital gene expression (DGE) profiling confirmed the differential expression of the phytohormone-related genes, indicating more other phyohormone differences involving in gene regulation between 'QY10' and 'W10' under low-B stress. Additionally, the activity of DR5:GFP was reduced in the root under low-B in Arabidopsis, and the application of exogenous IAA could partly restore the B-defective phenotype in 'W10.' Overall, our data suggested that low-B disturbed phytohormone homeostasis in B. napus, which originated from the change of transcriptional regulation of phytohormones-related genes, and the differences between genotypes may partly account for their difference in tolerance (B-efficiency) to low-B.

SELECTION OF CITATIONS
SEARCH DETAIL
...