Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 157: 106642, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38963998

ABSTRACT

Alginate and gellan gum have both been used by researchers as reinforcing networks to create tough and biocompatible polyethylene glycol (PEG) based double network (DN) hydrogels; however, the relative advantages and disadvantages of each approach are not understood. This study directly compares the mechanical and biological properties of polyethylene glycol di-methacrylate (PEGDMA) hybrid DN hydrogels reinforced with either gellan gum or sodium alginate using PEGDMA concentrations from 10 to 20 wt% and reinforcing network concentrations of 1 and 2 wt%. The findings demonstrate that gellan gum reinforcement is more effective at increasing the strength, stiffness, and toughness of PEGDMA DN hydrogels. In contrast, alginate reinforcement yields DN hydrogels with greater stretchability compared to gellan gum reinforced PEGDMA. Furthermore, separate measurements of toughness via unnotched work of rupture testing and notched fracture toughness testing showed a strong correlation of these two properties for a single reinforcing network type, but not across the two types of reinforcing networks. This suggests that additional notched fracture toughness experiments are important for understanding the full mechanical response when comparing different tough DN hydrogel systems. Regarding the biological response, after conjugation of matrix protein to the surface of both materials robust cell attachment and spreading was supported with higher yes associated protein (YAP) nuclear expression observed in populations adhering to the stiffer gellan gum-PEGDMA material. This study provides valuable insights regarding how to design double network hydrogels for specific property requirements, e.g., for use in biomedical devices, as scaffolding for tissue engineering, or in soft robotic applications.

3.
Acta Biomater ; 138: 301-312, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34757233

ABSTRACT

Anticipating an increasing demand for hybrid double network (DN) hydrogels in biomedicine and biotechnology, this study evaluated the effects of each network on the mechanical and biological properties. Polyethylene glycol (PEG) (meth)acrylate hydrogels with varied monomer molecular weights and architectures (linear vs. 4-arm) were produced with and without an added ionically bonded alginate network and their mechanical properties were characterized using compression testing. The results showed that while some mechanical properties of PEG single network (SN) hydrogels decreased or changed negligibly with increasing molecular weight, the compressive modulus, strength, strain to failure, and toughness of DN hydrogels all significantly increased with increased PEG monomer molecular weight. At a fixed molecular weight (10 kDa), 4-arm PEG SN hydrogels exhibited better overall mechanical performance; however, this benefit was diminished for the corresponding DN hydrogels with comparable strength and toughness and lower strain to failure for the 4-arm case. Regardless of the PEG monomer structure, the alginate network made a relatively larger contribution to the overall DN mechanical properties when the covalent PEG network was looser with a larger mesh size (e.g., for larger monomer molecular weight and/or linear architecture) which presumably enabled more ionic crosslinking. Considering the biological performance, adipose derived stem cell cultures demonstrated monotonically increasing cell area and Yes-associated protein related mechanosensing with increasing amounts of alginate from 0 to 2 wt.%, demonstrating the possibility for using DN hydrogels in guiding musculoskeletal differentiation. These findings will be useful to design suitable hydrogels with controllable mechanical and biological properties for mechanically demanding applications. STATEMENT OF SIGNIFICANCE: Hydrogels are widely used in commercial applications, and recently developed hybrid double network hydrogels have enhanced strength and toughness that will enable further expansion into more mechanically demanding applications (e.g., medical implants, etc.). The significance of this work is that it uncovers some key principles regarding monomer molecular weight, architecture, and concentration for developing strong and tough hybrid double network hydrogels that would not be predicted from their single network counterparts or a linear combination of the two networks. Additionally, novel insight is given into the biological performance of hybrid double network hydrogels in the presence of adipose derived stem cell cultures which suggests new scope for using double network hydrogels in guiding musculoskeletal differentiation.


Subject(s)
Biocompatible Materials , Hydrogels , Alginates , Polyethylene Glycols , Prostheses and Implants
4.
Chem Commun (Camb) ; 57(68): 8484-8487, 2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34350435

ABSTRACT

The incorporation of mechanosensitive linkages into polymers has led to materials with dynamic force responsivity. Here we report oxanorbornadiene cross-linked double network hydrogels that release molecules through a force-mediated retro Diels-Alder reaction. The molecular design and tough double network of polyacrylamide and alginate promote significantly higher activation at substantially less force than pure polymer systems. Activation at physiologically relevant forces provides scope for instilling dynamic mechanochemical behavior in soft biological materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...